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Abstract

Marginalized particle filtering (MPF), also known as Rao-Blackwellized particle filtering,

has been recently developed as a hybrid method combining analytical filters with particle

filters. In this paper, we investigate the prospects of this approach in enviromental modelling

where the key concerns are nonlinearity, high-dimensionality, and computational cost. In our

formulation, exact marginalization in the MPF is replaced by approximate marginalization

yielding a framework for creation of new hybrid filters. In particular, we propose to use the

MPF framework for on-line tuning of nuisance parameters of ensemble filters. Conditional

independence based simplification of the MPF algorithm is proposed for computational rea-

sons and its close relation to previously published methods is discussed. Strength of the

framework is demonstrated on the joint estimation of the inflation factor, the measurement

error variance and the length-scale parameter of covariance localization. It is shown that ac-

curate estimation can be achieved with a moderate number of particles. Moreover, this result

was achieved with naively chosen proposal densities leaving space for further improvements.

1. Introduction

We are concerned with the task of data assimilation using Bayesian approach. Bayesian

interpretation of data assimilation is well established in the community, e.g. by Anderson

et al. (1999). However, application of standard Bayesian methods in this domain is not

straightforward due to its specific properties, most notably high-dimensionality of the state
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variable. Successful application of Bayesian methods in this domain requires their adap-

tation. This was the case of two prominent Bayesian methods: the Kalman filter and the

particle filter. Practical constraints of the domain motivated approximation of the formally

correct Kalman filter into the form of ensemble Kalman filter, (Evensen 1994), which has

evolved beyond the Kalman filter since then. Direct application of the original particle filter

in the considered domain is problematic, Snyder et al. (2008), however, the ideas of particle

filtering are incorporated in many new algorithms. Each of these filters has features attrac-

tive for the domain as well as it has limitations. Specifically, the KF (and EnKF) is limited

by approximation of the posterior by a Gaussian density which is required for computa-

tional tractability in high dimensions. On the other hand, the particle filter is capable of

approximating an arbitrary density via empirical density at the price of significantly higher

computational cost, which is prohibitive in the considered dimensions. A combination of

these approaches is an obvious goal. Indeed, various hybrid filters have been proposed to

overcome the above mentioned difficulties, e.g. (Pham 2001; Nakano et al. 2007; Hoteit et al.

2008; Van Leeuwen 2009; Bocquet et al. 2010), etc. A common assumption of these methods

is that the state variable is treated as a homogeneous variable, i.e., that all entries in the

state vector are treated identically.

In this paper we investigate applicability of the marginalized particle filter (MPF), (Schön

et al. 2005)—which is also known as Rao-Blackwellized PF, (Doucet et al. 2000)—in the field

of environmental modeling. This filter arises as a combination of the conditional Kalman

filter with the particle filter. The key difference from the above mentioned hybrid filters

is that it partitions the state variable into two parts, and approximates each part by a

different type of distribution. Partitioning of the space has been discussed by Van Leeuwen
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(2009) in the context of hierarchical Bayesian models, where both partitions were estimated

by the particle filter. The partitioning may seem as an arbitrary step in the considered

domain, however, we will show that this approach may be attractive for addressing some

specific scenarios such as on-line tuning of already existing filters. Particle filtering ideas

have already been used for estimation of parameters by (Vossepoel and Van Leeuwen 2007),

however, the resulting method was based on weighting of the ensemble members. The MPF

approach is based on running several ensemble filters in parallel and it is thus closer to the

hierarchical ensemble filter (Anderson 2007b).

The paper is organized as follows. In Section 2, we review the basic algorithms of Bayesian

filtering, including the ensemble filter, the particle filter, and the marginalized particle filter.

In Section 3, we apply the MPF approach to tuning of ensemble filters and discuss its

potential extensions. Performance of the proposed methods is studied in Section 4 via

simulation of the 40-dimensional Lorenz model.

2. Bayesian Filtering and its Approximation

The task of data assimilation can be interpreted as a problem of inference of a discrete-

time stochastic process:

yt ∼ p (yt|xt) , xt ∼ p (xt|xt−1) . (1)

Here, xt is a vector known as the state variable and yt are the observations, p(·|·) denotes the

conditional probability density of the variable. By Bayesian Filtering we mean the recursive
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evaluation of the filtering distribution, p (xt|y1:t), using Bayes’ rule (Peterka 1981):

p (xt|y1:t) =
p (yt|xt) p (xt|y1:t−1)

p(yt|y1:t−1)
, (2)

p (xt|y1:t−1) =

∫
p (xt|xt−1) p (xt−1|y1:t−1) dxt−1, (3)

where p (x1|y0) is the prior distribution, and y1:t = [y1, . . . ,yt] denotes the set of all obser-

vations. The integration in (3), and elsewhere in this paper, is over the whole support of the

involved probability density functions.

Equations (2)–(3) are analytically tractable only for a limited set of models. The most

notable example of an analytically tractable model is linear Gaussian (1) for which (2)–

(3) are equivalent to the Kalman filter. For other models, (2)–(3) need to be evaluated

approximately. Selected approximations are now briefly described.

a. Ensemble Kalman filtering (EnKF)

The ensemble Kalman filter arises as an approximation of Bayesian filtering for Gaussian

stochastic system,

p (yt|xt) = N (Htxt,Rt) , p (xt|xt−1) = N (M(xt−1),Qt) , (4)

where N (µ,Σ) is a Gaussian distribution with mean value µ and covariance matrix Σ. Ht is

a linear observation operator that transforms vectors from the space of model into the space

of observations; generally non-linear operator M(·) represents a dynamics of the system.

Matrices Rt and Qt are error covariance matrices of observations and model, respectively.

Optimal inference of model (4) for linear operator M(·) yields the Kalman filter which

implies potentially high computational cost for high-dimensional state vector. The Ensemble
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Kalman filter (EnKF) is an approximation of the Bayesian filtering for model (4) with

predictive and posterior densities (2)–(3) projected to Gaussian densities:

p (xt|y1:t) = N (xat ,P
a
t ),

p (xt|y1:t−1) = N (xbt ,P
b
t).

Here, vectors x̄b and x̄a are known as background (predictive) model estimate and analysis

(posterior) estimate, in standard notation (Ide et al. 1997).

The predictive and posterior statistics are evaluated via a set of state vectors xi;t ∈

{xi;t}Mi=1 known as the ensemble members as follows:

x̄bt ≡
1

M

M∑
i=1

xbi;t, (5)

Pb
t ≡

1

M − 1

M∑
i=1

x̃bi;t
(
x̃bi;t
)T
. (6)

Here, {x̃bi;t = xbi;t − x̄bt}Mi=1 are deviations of the ensemble members from the mean, xb. The

standard EnKF filter (Burgers et al. 1998) requires to draw random samples to perturb the

observations to compute xat ,P
a
t . This need for random sampling is eliminated by deter-

ministic variants such as the ensemble adjustment Kalman filter (Anderson 2001) and the

ensemble square root filter (EnSRF) (Whitaker and Hamill 2002; Tippett et al. 2003).

In the EnSRF, the posterior mean x̄at and the deviations x̃ai;t are updated separately, as

follows:

x̄at = x̄bt + Kt

(
yt −Htx̄

b
t

)
, (7)

x̃ai;t = x̃bi;t − K̃tHtx̃
b
i;t, (8)

where Ht is an observation operator (which can be potentially non-linear), Kt is the Kalman

gain matrix for updating of the ensemble mean (7)
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Kt = Pb
tH

T
t (HtP

b
tH

T
t + Rt)

−1, (9)

and K̃t is the modified Kalman gain for updating departures from the mean (8)

K̃t = Pb
tH

T
t

[(√
HtP

b
tH

T
t + Rt

)−1
]T [√

HtP
b
tH

T
t + Rt +

√
Rt

]−1

. (10)

For a diagonal covariance matrix of observations Rt, (10) may be processed one element of

yt at a time without any significant increase of computational effort.

In all the equations above, the terms with Pb
t are replaced by empirical covariance in the

sense of (6). The same replacement is used for predictive density of the observations,

p(yt|y1:t−1) = N (Htx̄
b
t ,St), (11)

St = HtP
b
tH

T
t + Rt, (12)

which corresponds to the standard predictive density of the Kalman filter (Peterka 1981).

This quantity is often called marginal likelihood (marginalization is with respect to xt) and

plays an important role in statistical model selection (Jeffreys 1961).

1) Small sample issues

Due to approximation (6), the maximum rank of matrix Pb
t isM . The full rank covariance

matrix can thus be obtained with the number of ensemble members equal to or greater

than the dimensionality of the state variable. However, the number of ensemble members

is typically much smaller yielding inaccurate approximation of the true background error

covariance matrix. Basic techniques for improvement are covariance inflation and distance-

6



dependent covariance localization.

Ensemble inflation is a method that artificially increases the background error variance,

Pb
t , (Anderson and Anderson 1999). The forecast ensemble xt = [xbi;t, . . . ,x

b
M ;t] is replaced

by x∗t = [x∗bi;t, . . . ,x
∗b
M ;t],

x∗bi;t =
√

∆
(
xbi;t − x̄bt

)
+ x̄bt , i = 1, . . . ,M, (13)

where ∆ is the inflation factor slightly greater than 1. (13) implies that the mean value of

the ensemble remains the same but its variance is increased.

Covariance localization is a method suppressing spurious covariances representing false

relations between distant states (Houtekamer and Mitchell 1998). The method artificially

suppresses covariances between distant entries of the state vector and thus improves the con-

ditioning of matrices Pb
tH

Tand HPb
tH

T. Localization of the forecast error covariance matrix

is performed as a Schur product (element-by-element product) of a localization matrix with

the model forecast error covariance matrix Pb
t (6). Localization matrices are constructed by

using various correlation functions. The correlation function is equal to 1 at the observation

location and gradually decreases to zero at a finite distance from the observation. The rate

of decrease of the correlation function with distance is governed by the so called length-scale

parameter, l, (Gaspari and Cohn 1999).

b. Particle Filtering (PF)

Particle filtering (PF), (Gordon et al. 1993; Doucet et al. 2001), refers to a range of

techniques for generating an empirical approximation of p (x1:t|y1:t), where x1:t = [x1, . . . ,xt]
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is the state trajectory:

p (x1:t|y1:t) ≈
1

n

n∑
i=1

δ
(
x1:t − x

(i)
1:t

)
, (14)

where
{

x
(i)
1:t

}n
i=1

are i.i.d. samples from the posterior and δ(·) denotes the Dirac δ-function.

Therefore, this approach is feasible only if we can sample from the exact posterior, p (x1:t|y1:t) .

If this is not the case, we can draw samples from a chosen proposal distribution (importance

function), q (x1:t|y1:t), as follows:

p (x1:t|y1:t) =
p (x1:t|y1:t)

q (x1:t|y1:t)
q (x1:t|y1:t) ≈

p (x1:t|y1:t)

q (x1:t|y1:t)

1

n

n∑
i=1

δ
(
x1:t − x

(i)
1:t

)
. (15)

Approximation (15) can be written in the form of a weighted empirical distribution, as

follows:

p (x1:t|y1:t) ≈
n∑
i=1

w
(i)
t δ
(
x1:t − x

(i)
1:t

)
, (16)

w
(i)
t ∝

p
(
x

(i)
1:t|y1:t

)
q
(
x

(i)
1:t|y1:t

) . (17)

Under this importance sampling procedure, the true posterior distribution needs to be eval-

uated point-wise only, since (16) can be normalized trivially via a constant c =
∑n

i=1w
(i)
t .

∝ is used to denote equality up to the normalization constant.

The challenge for on-line algorithms is to achieve recursive generation of the samples and

evaluation of the importance weights. Using (1) and standard Bayesian calculus, (17) may

be written in the following recursive form:

w
(i)
t ∝

p
(
yt|x(i)

t

)
p
(
x

(i)
t |x

(i)
t−1

)
q
(
x

(i)
t |x

(i)
1:t−1,y1:t

) w
(i)
t−1. (18)

Now, x
(i)
t are drawn from the denominator of (18), which can be chosen as p (xt|xt−1). A

successful application of the particle filter requires to resample the particles to preserve in-
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formative weights w(i)
t . While re-sampling can be done in each step, it is computationally ad-

vantageous to perform it only when the efficient number of particles neff = 1/
∑n

i=1

(
w

(i)
t

)2

falls below a chosen threshold. See (Doucet et al. 2001) for more details and proofs of

convergence of the filter to the true posterior density.

c. Marginalized Particle Filtering (MPF)

The main advantage of importance sampling is its generality. However, it may be com-

putationally prohibitive to draw samples from the possibly high-dimensional state space of

xt, (Snyder et al. 2008). These problems can be overcome in cases where the structure of

the model (1) allows analytical marginalization over a subset, xc,t, of the full state vector

xT
t = [xT

c,t,x
T
p,t] (Doucet et al. 2001; Schön et al. 2005). Therefore, we consider the factoriza-

tion

p (x1:t|y1:t) = p (xc,1:t|xp,1:t,y1:t) p (xp,1:t|y1:t) , (19)

where p (xc,1:t|xp,1:t,y1:t) is analytically tractable, while p (xp,1:t|y1:t) is not. We replace the

latter by a weighted empirical distribution, in analogy to (15), yielding

p (x1:t|y1:t) ≈
n∑
i=1

w
(i)
t p
(
xc,1:t|x(i)

p,1:t,y1:t

)
δ
(
xp,1:t − x

(i)
p,1:t

)
, (20)

w
(i)
t ∝

p
(
x

(i)
p,1:t|y1:t

)
q
(
x

(i)
p,1:t|y1:t

) . (21)

Note that now we only have to sample from the space of xp,t. Recursive evaluation is achieved

by application of the Bayes rule

p (x1:t|y1:t) ∝
∫
p(yt|xt)p(xt|xt−1)p (x1:t−1|y1:t−1) dxt−1, (22)
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and substitution of (20) in place of p(x1:t|y1:t) and p(x1:t−1|y1:t−1). Comparing elements in

the summations on both sides of equation (22), we obtain:

w
(i)
t ∝

p
(
yt,x

(i)
p,t|x

(i)
p,t−1,y1:t−1

)
q
(
x

(i)
p,t|x

(i)
p,1:t−1,y1:t

) w
(i)
t−1, (23)

p(yt,x
(i)
p,t|x

(i)
p,t−1,y1:t−1) =

∫
p(yt|xt)p(xt|xt−1)p(xc,t−1|xp,1:t−1,y1:t−1)dxc,tdxc,t−1. (24)

Analytical tractability of integrations in (24) allows to use the Rao-Blackwell theorem to

show that the variance of weights (23) is lower than the variance of weights (18) for the

same problem (Doucet et al. 2000).

d. Marginalized Particle Filtering Framework

The requirement of analytical tractability of integrations in (24) is always fulfilled when

(1) contains a linear-Gaussian part, (Schön et al. 2005), giving rise to the MPF with the

Kalman filter. Tractable solution also exists for discrete-variable models (Thrun et al. 2005)

and models based on conjugate statistics (Saha et al. 2010). However, the range of models

amendable to this approach is still rather small and does not contain any models common

in atmospheric modeling.

We propose to relax the requirement of exact marginalization in (23) and replace it by an

approximation. Specifically, we note that given numerical values of x
(i)
p,t,x

(i)
p,t−1, equation (24)

is equivalent to the normalizing constant of a Bayesian filter (2). Hence, any Bayesian filter

that is capable of evaluating its normalizing constant can be used to approximate (24). What

results is an algorithm equivalent to the marginalized particle filtering where the analytical

Kalman filters are replaced by approximate conditional filters. Specifically, the following
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Algorithm 1 General MPF framework

i. Generate initial particles
{

x
(i)
p,0

}n
i=1

and set initial statistics of all associated conditional

filters.

ii. For each new data record yt do:

(a) Sample new value of particles
{

x
(i)
p,t

}n
i=1

, and update statistics of all associated

conditional filters via (25).

(b) Compute weights (23) of all particles and their associated conditional filters.

(c) If the number of efficient particles, neff , is lower than the chosen threshold, re-

sample the particles.

filters interact via Algorithm 1:

Conditional filter on variable xc,t, treating xp,t as an observation, i.e.:

p(xc,t|xp,1:t,y1:t) =
p(yt,xp,t|xc,t,xp,1:t)p(xc,t|xp,1:t−1,y1,t−1)

p(yt,xp,t|xp,1:t−1,y1,t−1)
. (25)

Particle filter on variable xp, that handles sampling from the proposal function q(xp,t|xp,t−1,y1:t)

and re-sampling. Each particle is attached to one conditional filter.

In this general form, the algorithm is rather unspecific. This is due to the fact that arbitrary

conditional filters can be combined with arbitrary particle filtering approaches. Therefore,

we consider Algorithm 1 to represent a framework for designing specific filtering variants.

The word framework is used to distinguish this approach from the analytical MPF.
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3. MPF Framework for Tuning of Ensemble Filters

The key property of the MPF is partitioning of the state variable into two parts. In

the original exact formulation, the choice of partitioning is fully determined by tractability

of the Bayes rule (2). Finding a partitioning in the context of environmental modeling

where the state variables typically obey the same equations is harder. However, the relaxed

formalization of Section 2d allows to interpret xp,t not as a partition of the full state but

rather as an augmentation of the original state (now denoted by xc,t) by nuisance parameters.

What results is a framework for on-line tuning of existing filters.

The general algorithm of tuning is described in Algorithm 1, specific variants arise for

the following choices:

Choice 1: choose a preferred variant of the conditional filter (e.g. a variant of the ensemble

filter) estimating xc,t,

Choice 2: choose tuning parameters of interest, xp,t, use them to augment the original state

xc,t via the chosen model of their evolution, p(xp,t|·),

Choice 3: choose a proposal density q(xp,t|·), e.g. the evolution model, q(xp,t|·) ≡ p(xp,t|·).

Different choices in each of the points above will lead to different properties of the resulting

filter. The number of possible combinations of these choices is enormous, and finding guide-

lines for the best option in a given application context is a task for further research. In some

applications, a physically motivated evolution model of xp,t may be found, while heuristic or

expert-chosen models may be more appropriate in others.
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a. Estimation of inflation factor, observation error variance, and length scale parameter

The techniques for compensating small ensemble issues, Section 2a1), have tuning pa-

rameters that typically need to be set-up experimentally. Substantial effort has been put

into on-line estimation of the inflation factor alone, (Anderson 2007a), or in tandem with

the observation error (Li et al. 2009). In this Section, we approach the same problem using

the MPF framework with the following specific choices.

Choice 1: We have chosen the EnSRF with multiplicative inflation (13) as our conditional

filter.

Choice 2: The unknown tuning parameters are: (i) the time-variant inflation factor ∆t,

(ii) the time-variant variance of the observation error, rt, for all observations, i.e. Rt = rtI,

where I is the identity matrix, and (iii) the time-varying length scale parameter lt of the

covariance localization function. Evolution of these parameters is modeled by truncated

Gaussian random walks,

p(∆t|∆t−1) = tN (∆t−1, σ
2
∆, [1,∞]),

p(rt|rt−1) = tN (rt−1, σ
2
r , [0,∞]), (26)

p(lt|lt−1) = tN (lt−1, σ
2
l , [0,∞]).

where scalar parameters σ∆, σr, and σl denote the spread of the random walks, respectively.

Non-negativity of all considered parameters motivates truncation of support of the random

walks. The augmentation of the state vector is then xp,t = [∆t, rt, lt]
T.

Choice 3: The proposal density is chosen as p(xp,t|xp,t−1) = p(∆t|∆t−1)p(rt|rt−1)p(lt|lt−1),
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under which (23) reduces to

w
(i)
t = w

(i)
t−1p(yt|y1:t−1,x

(i)
p,t), (27)

where p(yt|y1:t−1,x
(i)
p,t) is defined by (11) now explicitly conditioned on the unknown param-

eters

p(yt|y1:t−1,x
(i)
p,t) ∝ det

(
St(x

(i)
p,t)
)− 1

2
exp

(
−1

2
(yt −Htx̄

b
t)

TS−1
t (x

(i)
p,t)(yt −Htx̄

b
t)

)
. (28)

Under these choices, Algorithm 1 defines an adaptation scheme related to other ap-

proaches used in the literature. Specifically, (28) is the same equation that was used for

maximum likelihood estimation of covariance parameters (Dee 1995). Maximization of this

function is achieved e.g. via simplex methods (Mitchell and Houtekamer 2000). In our

approach, (28) serves as a likelihood function for Bayesian estimation of the tuning parame-

ters, xp,t. The variance of the random walk then models our belief in time-variability of the

tuning parameters. In the special case of stationary parameters, (i.e. σ∆ = σr = σl = 0),

Algorithm 1 is reduced to a parallel run of n ensemble filters, each of which is accumulating

the product of (28) in each step. After several hundreds of steps, majority of the weights will

converge to zeros and one of them will converge to one. Such behavior is known as sample

impoverishment in the particle filtering literature. The convergence of probability mass to a

single point may be useful for finding the best tuned values in off-line phase. However, this

degeneracy is undesirable for on-line application, and non-zero variances of random walks

(26) have to be used.

For non-stationary parameters, each of the n filters follows a random walk of the tuning

parameters. The re-sampling operation removes filters that diverged into unlikely regions,

and replaces them by copies of the filters with parameters that are more likely. The area of
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higher likelihood is then explored by more filters in detail. This of course requires to run

n ensemble filters in parallel which is computationally expensive. However, the key advan-

tage of this approach is that it is able to optimize non-convex and multi-modal likelihood

functions.

b. Computational simplifications within the MPF framework

Parallel evaluation of n ensemble filters is computationally inefficient especially when the

tuning parameters are close to each other, for example in cases when the posterior is very

sharp. In that case, we may represent the posterior by a point estimate, x̂p,t,

x̂p,t =
n∑
i=1

w
(i)
t x

(i)
p,t, (29)

and explore the space of (28) only locally. This is a common approach in adaptive ensemble

filtering and we will discuss its implications from the MPF point of view.

Adaptive evaluation of a single ensemble filter corresponds to approximation of the joint

posterior (19) by a conditionally independent posterior

p (xt|y1:t) ≈ p (xc,t|x̂p,t,y1:t) p (xp,t|y1:t) . (30)

The problem is then split in an interaction of an ensemble filter and a filter on parameters,

as used e.g. in (Anderson 2007a). The key difficulty of this approach is that the normalized

constant of the ensemble filter (28) is informative only about the point estimate x̂p,t and not

about its posterior density. Optimization of (28) around this value at time t is independent of

the value at time t−1. Restoration of temporal correlation between values of the parameters

is achieved e.g. by the means of temporal smoothing (Li et al. 2009).
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Algorithm 2 Computational simplification of the MPF framework (CI-MPF)

i. Generate initial particles
{

x
(i)
p,0

}n
i=1

and set the initial statistics of the ensemble filter.

ii. For each new data record yt do:

(a) Compute weights (27), using (28) for each x
(i)
p,t.

(b) Evaluate expected value x̂p,t (29) and use it to inflate and localize the background

covariance Pb
t .

(c) Perform the analysis step the ensemble filter via (7)–(10).

(d) If the number of efficient particles, neff , is lower than the chosen threshold, re-

sample the particles.

To resemble the same approach in the MPF framework, we impose additional approxi-

mation

p
(
xc,t|x(i)

p,t,y1:t

)
≈ p (xc,t|x̂p,t,y1:t) , (31)

in (20) and (24). What results is a combination of a single ensemble filter with a particle

filter, Algorithm 2. We note the following:

• The MPF framework (Algorithm 1) requires n background updates and n analysis steps

of the ensemble filter, while the simplified algorithm CI-MPF requires one background

update, n+ 1 evaluations of (28), and one analysis step.

• Using only one ensemble filter corresponds to local search of extrema in (28). However,

the weights w(i)
t preserve temporal correlation between likelihood values at steps t and

t− 1.
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• Experiments reveal that the values of (28) for different particles are very close to each

other and it takes tens or hundreds of steps for the efficient sample size to fall below

a threshold. As a heuristic, we propose to stop the temporal evolution of the particles

during this period.

• When the efficient sample size reaches the threshold, the new particles are sampled from

p(xp,t|x̂p,t) rather than p(xp,t|x(i)
p,t). This choice is motivated by the strong influence of

x̂p,t on the weights w(i)
t .

Approximation (31) was first presented by Mustière et al. (2006). We will use the label

conditionally-independent MPF (CI-MPF) in this paper. Approximation of the full poste-

rior on xp,t by the expected value may seem as a coarse approximation since it looses all

information about variance and higher order moments. More advanced assumptions can be

made, for example, we may combine the original MPF and the CI-MPF approximation in

a way that ∆t and rt are approximated using conditional independence, while n parallel

EnSRFs are run for different values of lt. A way to use higher order moments within this

approach has been presented in (Šmídl and Quinn 2008), however, it implies changes within

the conditional filter, i.e., the ensemble filter in this case.

4. Simulation Studies

a. Lorenz 96 model

To demonstrate versatility of the method, we test the MPF approach in the Lorenz 96

model by Lorenz and Emanuel (1998) which has been widely used in simulation studies. The
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model is given by

dxj
dt

= xj−1(xj+1 − xj−2)− xj + F, (32)

where F is the model forcing and xi are variables forming a cyclic chain. We define x−1 =

xJ−1, x0 = xJ and xJ+1 = x1 to make (32) meaningful for all values of j = 1 . . . J . We use 40

variables, and F = 8 for the strength of forcing. The model (32) can be integrated forward

with the fourth-order Runge–Kutta scheme. The system is computationally stable for step

of 0.05 non-dimensional units, which is also the step of the analysis. All the experiments are

performed as twin experiments.

b. Stationary parameters

To create a baseline for comparison of adaptive tuning strategies, we performed parallel

run of EnSRFs for fixed values of ∆, l selected on a rectangular grid, as in (Whitaker and

Hamill 2002). From Bayesian point of view, this setup corresponds to estimation of stationary

parameters:

p(∆, l|y1:t) ∝ p(∆, l)
t∏

τ=1

p(yτ |y1:τ−1,∆, l) (33)

where p(∆, l) is a prior probability density on discrete values of ∆, l at the grid points,

which is uniform, and p(yτ |y1:τ−1,∆, l) is given by (28). For numerical stability, (33) is

often computed in logarithmic scale where the product is replaced by the sum of marginal

log-likelihoods.

The observation data are generated from the perfect model scenario where the ‘true’ state

was generated by integrating the Lorenz-96 model (32) for 100000 steps and observations are
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generated from the true state by addition of zero-mean Gaussian noise with variance r = 1.

The analysis was performed by the EnSRF with covariance localization constructed using a

compactly supported fifth-order piecewise rational function given by (4.10) in (Gaspari and

Cohn 1999) with length scale parameter l. The results of a simulation experiment with 132

EnSRFs with 15 ensemble members, r = 1, ∆ = [1.0, 1.1, . . . , 1.10], and l = [0, 1, . . . , 11] are

displayed in Figure 1 in two modalities. First, the traditional RMSE is computed for each

couple of parameters,

RMSE =
1

99000

100000∑
t=1000

√
1

40
(xt − x̂c,t)T(xt − x̂c,t), (34)

where

x̂c,t =
n∑
i=1

w
(i)
t x

(i)
c,t, (35)

for the MPF algorithm. Second, the sum of marginal log-likelihoods (33) within the same

time intervals is displayed for illustration.

Note that the contours of the marginal log-likelihood (33) correspond closely to the

contours of the RMSE. This suggests that the marginal likelihood (28) is a good measure

to optimize for the best RMSE in cases where the true state values are not known. The

three best choices within each modality are given in Table 1. Note that two choices—

∆ = 1.05, l = 8 and ∆ = 1.04, l = 6—are in the top three for both criteria. The relative

differences are rather small, however, in terms of normalized posterior probability (33) the

best parameters in Table 1 are e82 times more likely that the second best.
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c. Adaptive Estimation in Perfect Model Scenario

The same observation data used for estimation of stationary parameters were used to

estimate the time-varying parameters in two different scenarios: (i) fixed rt = 1.0, estimated

∆t, lt, and (ii) estimated rt, lt,∆t. The particle filter is using multinomial re-sampling (Gor-

don et al. 1993) and neff = 0.8n. The variances of random walks (26) for the MPF algorithm

were chosen as

σ∆ = 0.01∆
(i)
t−1 + 0.0001,

σl = 0.01l
(i)
t−1 + 0.0001, (36)

σr = 0.005r
(i)
t−1 + 0.0001,

The CI-MPF algorithm was run with 10 times greater variances of the random walk than

(36). The prior density of the tuning parameters is chosen as uniform on support p(σy,0) =

U(0.1, 4), p(∆0) = U(1.0, 1.10), p(l0) = U(0.11, 11.11).

Results of simulations for different number of particles, both algorithms (MPF and CI-

MPF), and both scenarios are displayed in Tables 2 and 3, respectively. In accordance with

(Whitaker and Hamill 2002; Li et al. 2009), we ignore the first 1000 steps and report the

results only for the subsequent steps. Illustration of the behavior of the algorithm in the first

100 steps of scenario (ii) is displayed in Fig. 2 , via the mean value of the posterior density

and the region between minimum and maximum value of the particles. Spatial distribution

of the particles for ∆t, lt in scenario (i) at time steps t = 1, 50000, 100000 is displayed in Fig.

3 on the background of contours for the stationary marginal log-likelihood from Fig. 1. We

note that alignment of the particles in the middle of the stationary contour at t = 50000 is a

coincidence, in majority of all other time steps the cloud is a bit off the stationary optimum.
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As expected, the RMSE of both tuning algorithms is steadily decreasing with increasing

number of particles for all considered scenarios. The exact MPF algorithm clearly out-

performs the conditionally-independent approximation CI-MPF. Note that for n = 10 and

higher, the MPF filter achieves better performance than the best-tuned filter. On the other

hand, the CI-MPF is coming close to the best-tuned values but never better. However, at-

tractiveness of the CI-MPF lies in the fact that it imposes smaller computational overhead

over the original EnSRF, while computational complexity of the MPF is n times that of the

EnSRF.

In the more complex scenario of tuning all three parameters, we can observe much higher

gap between performance of MPF and CI-MPF, Table 3. The MPF algorithm achieves

only negligible increase of the RMSE over the scenario with known r, while CI-MPF is

significantly worse. Especially with n = 5, the overall performance of the CI-MPF algorithm

is severely degraded. This is caused by an instability in estimation that occurred around time

t = 90000, see Fig. 4. Much smaller anomalies of a similar kind occur for all tested numbers

of particles in the CI-MPF algorithm, while no such anomaly occurred in any run of the MPF

algorithm. These anomalies also do not occur in any run of the CI-MPF algorithm of the

simple scenario with known r. Therefore, we conjecture that with increasing uncertainty in

xp,t the enforced locality of approximation (30) is quickly loosing accuracy.

We note that good performance of the adaptive tuning was achieved for as low as 10

particles. This result is especially promising since it suggests that even more challenging

assimilation scenarios can be handled at comparable computational complexity. This is

particularly true for the exact MPF algorithm since addition of one extra tuning parameter

had negligible impact on the performance. On the other hand, the CI-MPF algorithm does
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not scale as well.

d. Model with Random Perturbations

For comparison with (Li et al. 2009), we tested the MPF algorithms on data simulated

with model (32) with additive random perturbations

dxj
dt

= xj−1(xj+1 − xj−2)− xj + F + αet, (37)

where et is Gaussian distributed noise with zero-mean and unit variance. The observed data

were generated using model (37) with α = 4 for 100000 steps. The same setup of the EnSRF

as in the previous experiments was used, including the same initial conditions. Results for

estimation for the 100000 steps are displayed in Table 4. Since parameter α is stationary,

the time evolution of the parameter estimates ∆̂t, l̂t using MPF is reaching the stationary

values in Table 4 after the initial convergence period. However, convergence of the CI-MPF

filter is much slower, causing large std in Table 4.

Note that the additive noise was compensated by higher values of ∆̂t and lower values

of l̂t than that of the perfect model, Table 3. This is in agreement with findings of Li et al.

(2009) and also expected because α is increasing the background covariance (reflected by

higher inflation) and decreasing correlation between elements of the state vector (reflected

by lower length scale).

For testing the tracking properties of the MPF algorithms, we have designed a scenario

with time varying αt according to a triangular profile. Posterior densities of the parameters

obtained using the MPF algorithm are displayed in Fig. 5. For this experiment, we
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increased the variances of random walks (26) to

σ∆ = 0.01∆
(i)
t−1 + 0.001,

σl = 0.01l
(i)
t−1 + 0.001,

σr = 0.01r
(i)
t−1 + 0.01.

In this case, the CI-MPF algorithm was unable to follow the change in the parameters,

confirming the observation of its slower convergence from the experiment with stationary α.

This experiment also confirms the trend of increasing ∆t and decreasing lt with increasing

αt. Note that when α returns to the stationary values, so do the estimates of the tuning

parameters.

5. Discussion and Conclusion

The purpose of this paper is to present Marginalized Particle Filtering (also known as

Rao-Blackwellized filtering) as an attractive tool for research of data assimilation methods in

environmental modeling and especially for tuning of ensemble filters. The method is based

on partitioning of the state (or unknown parameters) into two parts: (i) unknowns estimated

by a conditional filter, and (ii) unknowns estimated by a particle filter. The original MPF

assumes that the conditional filter is analytically tractable, which allows to prove advantages

over a pure particle filter. In this paper, we propose to replace analytical filters by ensemble

filters. The resulting algorithm is loosing its theoretical advantages, however it allows to

address the problem of tuning of ensemble filters. We have shown that the number of

particles needed to achieve acceptable performance is rather low, for example 10 particles
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are sufficient to achieve on-line tuning of the inflation factor and the length scale parameter

in the EnSRF for the 40-dimensional Lorenz model. Furthermore, we have shown that the

approach easily extends to estimation of unknown variance of the observation error and

potentially any other tuning parameters. Once again, 10 particles were sufficient to achieve

performance comparable to that of the best-tuned filter.

Computational cost of the MPF framework is high since it requires running n EnSRFs in

parallel. An attempt to reduce the cost was presented using the enforcement of conditional

independence, resulting in an algorithm that adapts a point estimate of parameters for a

single EnSRF. Similarities of this CI-MPF algorithm to previously published methods were

discussed. The CI-MPF algorithm performed well only on simple scenarios with tuning of

low number of stationary parameters where it was significantly faster than the exact MPF

algorithm. However, in more demanding scenarios its performace significatly dropped. We

expect that advantages of parallel evaluation of ensemble filters over adaptation of a single

ensemble filter will become apparent in even more demanding scenarios. Computational

complexity may prevent its operational use, however, it may be an important tool for gaining

insight into the ensemble filters in the same spirit as in (Anderson 2007b).

The potential of the framework has been demonstrated on on-line tuning of the ensemble

filters. However, it is not the only scenario where it can be used. Since posterior density of

the MPF is a mixture of Gaussians, the approach may be adapted for estimation of Gaussian

mixture filters that have been studied e.g. by Bengtsson et al. (2003).

This paper is only an initial step in application of the MPF framework in this domain.

Clearly, more work is required to discover full potential of the method. The open problems

include justified design of suitable models of parameter evolution and approximations reduc-
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ing the computational cost of the MPF. However, the existence of the exact solution allows

to design the necessary computational simplifications to resemble its behavior.
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Table 1. Best stationary choices of nuisance parameters for EnSRF according to two
criteria.

RMSE marginalized log-likelihood
rank inflation localization mean value inflation localization sum
#1 1.04 7.0 0.2074 1.05 7.0 -2079401
#2 1.04 6.0 0.2075 1.05 8.0 -2079483
#3 1.05 8.0 0.2076 1.04 6.0 -2079513
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Table 2. Adaptive tuning of xp,t = [∆t, lt]
T and the resulting analysis RMSE error, averaged

over assimilation steps between t = 1000 and t = 100000, std denotes standard deviation of
the estimates from the mean over time.

MPF with perfect observation error
n mean RMSE std RMSE mean∆̂t std ∆̂t mean l̂t std l̂t mean r̂t std r̂t
5 0.2089 0.0521 1.0334 0.0080 5.6942 0.9072 1.0 0.0
10 0.2071 0.0510 1.0337 0.0064 6.3431 0.9229 1.0 0.0
20 0.2065 0.0523 1.0331 0.0061 6.2933 0.5005 1.0 0.0

CI-MPF with perfect observation error
n mean RMSE std RMSE mean ∆̂t std ∆̂t mean l̂t std l̂t mean r̂t std r̂t
5 0.2101 0.0503 1.0405 0.0097 5.2201 0.7541 1.0 0.0
10 0.2095 0.0503 1.0338 0.0059 4.9780 0.5387 1.0 0.0
20 0.2089 0.0498 1.0396 0.0061 5.1979 0.5335 1.0 0.0
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Table 3. Adaptive tuning of xp,t = [∆t, rt, lt]
T and the resulting analysis RMSE error,

averaged over assimilation steps between t = 1000 and t = 100000, std denotes standard
deviation of the estimates from the mean over time.

MPF with unknown observation error
n mean RMSE std RMSE mean ∆̂t std ∆̂t mean l̂t std l̂t mean r̂t std r̂t
5 0.2094 0.0521 1.0317 0.0075 5.6154 0.7289 1.0059 0.0215
10 0.2072 0.0509 1.0354 0.0058 6.7455 0.9541 1.0031 0.0230
20 0.2064 0.0511 1.0355 0.0055 6.7182 0.9202 1.0018 0.0193

CI-MPF with unknown observation error
n mean RMSE std RMSE mean ∆̂t std ∆̂t mean l̂t std l̂t mean r̂t std r̂t
5 0.2295 0.1856 1.0458 0.0255 7.2192 3.0843 1.0394 0.2284
10 0.2149 0.0637 1.0399 0.0181 6.2032 1.9454 1.0048 0.0312
20 0.2122 0.0524 1.0440 0.0169 5.1734 1.2772 0.9996 0.0142
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Table 4. Adaptive tuning of xp,t = [∆t, lt, rt]
T for system with random model errors (37)

with variance α = 4. The resulting analysis RMSE error is averaged over assimilation steps
between t = 1000 and t = 100000, time averages of parameter estimates are displayed in
tandem with standard deviation of the estimates from the mean over time. Both algorithms
were run with n = 10 and neff = 0.8n.

mean RMSE std RMSE mean ∆̂t std ∆̂t mean l̂t std l̂t mean r̂t std r̂t
MPF 0.3563 0.0542 1.1944 0.0230 3.0810 0.8198 1.0055 0.0618

CI-MPF 0.4189 0.1539 1.1171 0.0343 3.6739 0.4772 1.1293 0.1811
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Fig. 5. Estimation of system (37) with time-varying αt of triangular profile displeyd at the
bottom. Posterior densities of the parameters are displayed via their mean value (black line)
and region between minimum and maximum value of the particles (gray area).
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