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Abstract— Navigation of unmanned aerial vehicles

(UAVs) is a popular and well studied topic. In this

contribution, we apply the existing decision theory to

the problem of tracking atmospheric pollution, specif-

ically accidental release of radiation. The UAVs work

in tandem with the stationary radiation monitoring

network to estimate consequences of the radiation

accident. Results of this estimation serve as support-

ing material for the human decision makers, whose

main concern is protection of the population. We

test navigation of the UAVs with respect to two loss

functions: mutual information and expected misclas-

sification of a�ected people. Several approximations

were designed to navigate the UAVs in real time. The

simulation experiments confirm that UAVs have great

potential to complement limited capabilities of the

stationary radiation monitoring network.

I. Introduction

Radioactive material is released into the atmosphere
only in the case of severe accident in a nuclear power
plant. It is an extremely rare event, however with severe
consequences for potentially many people living in prox-
imity of the power plant. Awareness of radiation security
has been increased after the Chernobyl accident, and
every country is now equipped with radiation monitoring
network (RMN) of on-line connected receptors continu-
ally measuring radiation levels. With growing availability
of commercial UAVs, these may become very attractive
complement of existing stationary RMNs. Aerial surveil-
lance is routinely used after the accident for measuring
of the radiation from deposition. In this text, we consider
the use of UAVs in the early phase of an accident to track
the radioactive cloud that is still moving over the terrain.

General methodologies for tracking of radioactive re-
leases has been studied in the literature, e.g. [1], [2],
without explicit navigation of the measuring devices. On
the other hand, general methodologies of design of mobile
sensor networks are also available [3], [4]. In this text,
we combine the general methods of sensor networks with
specific features of the radiation protection. The specifics
are in the loss functions and in parametrization of the
state space model.

II. Decision Theory Framework

Navigation of the UAVs will be formalized as a task of
decision making under uncertainty. The action variable
is the navigation command for every single UAV in terms
of GPS coordinates. We assume that the UAV is capable
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of reaching the GPS position by its own means. The GPS
coordinates will be assigned in a centralized way by the
emergency coordination center.

The decision that is to be made at each time t is to
choose the location where all UAVs should be at time
t + 1. We assume that J UAVs are already in the air,
and the action variable is a vector a

t+1 = [a1,t+1, a

J,t+1],
from a set of possible locations A

t+1. The optimal action,
a

ú
t+1, is the one that minimizes the expected value of a

chosen loss function [5]:

a

ú
t+1 = arg min

at+1œAt+1
E(L(x

t:t+h

, a

t+1:t+h

)|y1:t),(1)

where x

t:t+h

= [x
t

, . . . , x

t+h

] is the uncertain future
trajectory of the state of the system, L(x, a) is the loss
function mapping the space of all actions and states to
the real axis, y1:t are the measured data, E(·) is the
operator of expected value with respect to probability
density function p(·) of the random variable in argument
of the expectation.

This formalism is rather general and its results will
di�er with di�erent choices of the loss function L and/or
di�erent representations of uncertainty. Indeed, many
existing solutions may be interpreted as various choices
of these two factors. For example, entropy minimization
techniques choose logarithm of the probability density
function to be their loss function. In particular, [6]
considered x

t

to be spatial distribution of the pollutant
with Gaussian distributed density and entropy of x

t

being the loss function; [4] designed a particle filtering
approximation for mutual information loss function, and
[1] introduced a custom loss function for the purpose of
radiation protection. We combine these approaches to
design navigation strategy for the UAVs.

A. Atmospheric dispersion model

When the pollutant is released into the atmosphere, it
forms a plume which is subject to wind and dispersion.
For a perfectly known parameters of the release ◊ and
a perfectly known weather conditions (containing wind
speed and direction, Pasquill’s stability category, etc.),
the shape of the plume can be very well approximated by
the Gaussian plume model or a sequence of pu� models
[7]. The proposed methodology will work with any type
of dispersion model, however, we choose the classical pu�

model for our experiments. The pu� model is formed
by a sequence of pu�s labeled i = 1, . . . , I, each pu�
is assumed to approximate short period of the release be
an instantaneous release of the pollutant at discrete time



Fig. 1. Illustration of composition of the pu� model for release of
6 pu�s. Contours denote levels of the radiation dose q(s) and every
second pu� is displayed as a circle with diameter 3‡. Current wind
field is illustrated by arrows in the center of each pu�.

t
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. Concentration of the pollutant in a single pu� at time
· is given by:
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where s is a vector of spatial coe�cients, l

i,·

=
[l1,i,·

, l2,i,·

, l3,i,·

] is the vector of location of the pu�
center, ‡1, ‡2, ‡3 are dispersion coe�cients, and Q

i

is the
released activity in the ith pu�.

Illustration of the pollution model is displayed in Fig.
1. Spatial distribution of the pollutant is then fully
determined by state variables:

x

pm,t

= [l1,t

. . . l

I,t

, Q1,t

, . . . Q
I,t

, ‡1,t

, . . . ‡
I,t

]. (3)

Radioactive material dispersed in the plume emits ioniz-
ing radiation which can be measured, typically by the in-
tegrated mono-energetic gamma dose-rate measurements
over the measurement period (typically 10min). The
expected value of the measured total dose on a receptor
at location s

m

is a sum of contributions from each pu�
in the pu� model:

q
t

(s
m

) =
Iÿ

i=1
c

i,t

(s
m

), (4)

where the coe�cient c
i,t

(s
m

) is computed as [8]:

c
i,t

(s
m

) = fl

ˆ
t

t≠1
�

i

(s
m

, ·, E) d·. (5)

Here, fl is a constant depending on the released material.
Fluency rate �

i

(s
m

, E) from the ith pu� is calculated as
the following three dimensional integral over the volume
of the pu�:

�
i

(s
m

, ·, E) =
ˆ

�

C
i

(s, ·) B(E, µr) exp(≠µr)
4fir2 ds, (6)

B(E, µ r) = 1 + k µr, k = µ ≠ µ
a

µ
a

. (7)

r = ||s
m

≠ s||. (8)

Ambient activity concentration C
i

(s, ·) is defined by (2).
B is the linear build-up factor, µ and µ

a

are linear and
mass attenuation coe�cient, respectively; � µ R3 is a
spatial domain of integration (s œ �).

B. Probabilistic state space model

Temporal evolution of the state variable (3) is sub-
ject to many uncertainties. The key uncertainty is with
the released activity Q

i

, i = 1, . . . , I and the weather
conditions: wind direction „

t

, and wind speed v
t

that
can vary in space and time. We have chosen to model
the uncertainty in the wind field as corrections of the
numerical weather prediction:

v
t

(s) = ṽ
t

(s)◊
v,t

, (9)
„

t

(s) = „̃
t

(s) + ◊
„,t

+ ◊
c,t

||s ≠ s0||2, (10)

where ṽ
t

(s), „̃
t

(s) are the wind speed and wind direction
predicted by the numerical model at location s, respec-
tively. s0 is the location of the meteo-station and || · || de-
notes Euclidean distance. Constants ◊

t

= [◊
v,t

, ◊
„,t

, ◊
c,t

]
are unknown biases of the numerical weather forecast
model at time t. Correction of the wind field forecast is
then achieved by estimation of ◊

v,t

, ◊
„,t

and ◊
c,t

using
random walk model on their time evolution. Given wind
field (9)–(10), center of the ith pu� moves deterministi-
cally according to

l1,i,t+1 = l1,i,t

+ v
t

(l
i,t

) sin(„
t

(l
i,t

)),
l2,i,t+1 = l2,i,t

+ v
t

(l
i,t

) cos(„
t

(l
i,t

)).

Dispersion coe�cients ‡ are deterministic functions of
total traveled distance form the source and Pasquill’s
stability category. Temporal evolution of the released
dose is modeled by a random walk model. The full state
of the system is then x

t

= [x
pm,t

, ◊
t

].

C. Measurement models

We assume that we have measurements from three
sources: (i) a stationary RMN composed of radiation dose
receptors at fixed locations, s

m

, m = 1, . . . , M , (ii) a
meteo-station near the power plant, and (iii) UAVs in the
air measuring radiation dose. The vector of observations
is then composed of:

y

t

= [v
t

, „
t

, y
Q,1,t

, . . . y
Q,M,t

, z1,t

, . . . , z
J,t

],

where v
t

and „
t

are the measured wind speed and wind
direction at the meteo-station, y

Q,m,t

,m = 1. . . . , M are
the dose measurements from the RMN and z

j,t

, j =
1, . . . , J are the dose measurements from the UAVs. The



measurements are assumed to have distributions
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where q
t

(·) is given by (4), and ‡
b

, “
v

, “
Q

are constants
given by accuracy of the used devices. Note that the
locations of the RMN sensors are stable, while the po-
sition of the UAVs is changing, and thus a�ecting the
integration path in (5). In the simulation we assume
linear interpolation of the UAVs’ position between a

t

and
a

t+1.

D. Loss function

We briefly review typical loss function used in the
literature.

1) Entropy and mutual information: The purpose of
the locating new mobile measuring station is to reduce
uncertainty in the estimated parameters. This idea can
be formalized using the joint entropy of the state and the
observations [9], [6].

H(x
t

, y

t

) = ≠
ˆ

p(x
t

, y

t

|I
t

) log p(x
t

, y

t

|I
t

)dx

t

dy

t

(13)

where I
t

= {y1:t≠1, a

t

}. A common assumption made e.g.
in [6] is that the total entropy H(x

t

, z
t

) is constant for
all locations a

t

. This is true only under the assumption
that the entropy of measurements is independent of its
location a

t

and x

t

. This assumption does not hold for
(11), hence we will use the mutual information loss [4]:

I(x
t

; y

t

) = H(y
t

) + H(x
t

) ≠ H(x
t

, y

t

). (14)

Since H(x
t

) can not be influenced by actions a

t

, we need
to evaluate (13) and

H(y
t

) = ≠
ˆ

p(y
t

|I
t

) log p(y
t

|I
t

)dy

t

. (15)

2) Misclassification of decision: An alternative loss
function for the purpose of radiation protection is defined
with respect to the final decision on the countermeasures.
The countermeasures for radiation protection are defined
by laws. Typically, the limits for introduction of counter-
measures are given in terms of the expected total received
dose

d
T

(s
m

) =
Tÿ

t=1
q

t

(s
m

), (16)

where T is the time when contribution from q
t

drops
zero. The law gives various values of threshold, d, for
introduction of a specific countermeasure.

A suitable loss function for the purpose of radiation
protection is defined in terms of incorrectly classified
people in the considered evacuation zones [1]:

L(x
t:T , a

t:T ) = –I
fp

+ —I
fn

, (17)

where I
fp

is the number of people incorrectly classified
for evacuation, and I

fn

is the number of people that are
incorrectly classified to stay in the polluted area. We split
the emergency planning zone around the power plant
into K areas, each representing a constant number of
inhabitants, e.g. 100, each with a predefined location, i

k

,
k = 1 . . . K. The total number of incorrectly classified
inhabitants is then

I
fp

=
Kÿ

k=1
E

1
d̂(i

k

) > d & d(i
k

) < d
2

, (18)

I
fn

=
Kÿ

k=1
E

1
d̂(i

k

) < d & d(i
k

) > d
2

, (19)

where d̂ is defined as a point estimate of the total dose
(16)

d̂(i
k

) =
ˆ

d(i
k

)p(x
t:T |y

t:T )dx

t:T , (20)

p(x
t:T |y

t:T ) Ã p(x
t

)
TŸ

·=t+1
p(y

·

|x
·

, a

·

)p(x
·

|x
·≠1).(21)

Since future values of the observations y

t+1:T are un-
known, the expectations in (18)–(19) are also over
p(y

t+1:T |·).
Note that optimization of (17) can not be decomposed

into the common additive form due to the presence
of logical expressions in (18)–(19). This would make
evaluation of the loss extremely time consuming. There-
fore, we propose to decompose (17) into the following
approximate additive loss:

L(x
t:T , a

t:T ) ¥
Tÿ

t=1
–I

fp,t

+ —I
fn,t

, (22)

I
fp,t

=
Kÿ
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E (q̂

t

(i
k

) > q & q
t
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k

) < q) ,

I
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=
Kÿ

k=1
E (q̂

t

(i
k

) < q & q
t

(i
k

) > q) .

Here, q is an empirically chosen limit.
E. Particle filter estimation

We assume that all uncertainty is modeled by an
empirical probability density function

p(x1:t|y1:t) ¥
Nÿ

n=1
w

(n)
t

”(x1:t ≠ x

(n)
1:t ), (23)

where x

(n)
1:t , n = 1, . . . , N , is a sample of the state space

trajectory. Assimilation of the measured data is then
achieved via sampling-importance-resampling procedure,
where the weights can be computed recursively,

w
(n)
t

Ã w
(n)
t≠1

p(y
t

|x
t

)p(x
t

|x
t≠1)

q(x
t

|y
t

) . (24)

Good proposal function and resampling strategy are
necessary steps preventing degeneracy of the particle
filter (24), [10].



III. Navigation of UAVs

A. Decision space and optimal decisions

We assume that within the sampling period, the UAVs
can fly a maximum distance d

max

. Hence, the required lo-
cation a

j,t+1 must satisfy ||a
j,t+1 ≠ a

j,t

|| < d
max

. Hence,
we discretize the space of potential actions into R points
on polar coordinates within the maximum distance, see
Fig. 5 for illustration. The total number of potential
decisions in A

t+1 for one-step-ahead optimization is then
RJ .

Optimal decisions are obtained by evaluation of one-
step-ahead optimization of the chosen loss function for all
combinations of the potential decisions. Sampling time
of the decisions is 10min. The decision is then submitted
as a setpoint to the UAVs that navigate to the given
coordinates autonomously.

B. Evaluation of the mutual information

For the mutual information loss (14), we are to eval-
uate relation (13) and (15). We assume that all mea-
surements (11) are uncorrelated, hence the only mea-
surements that are a�ected by the control action are z

t

.
Under the chosen approximation (23), the joint and the
marginal densities are

p(x
t

, z

t

|y1;t≠1, a

t
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Nÿ
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t

p(z
t
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(25)

p(z
t

|y1;t≠1, a

t

) =
Nÿ
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t
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Substituting (25) into (13)–(15) we obtain:
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Nÿ

n=1
w

(n)
t

H(z
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H(z
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Note that evaluation of (27) for (11) is relatively simple:

H(x
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, y

t

) =
Nÿ

n=1
w

(n)
t

Jÿ

j=1
log

1
q

t

(a
j

, x
(n)
t

)
2

+ c,

where c = ≠ 1
2 J log(2fie) + J log “ is constant for all a

t

.
However, evaluation of (28) is a complex integral which
is hard to evaluate.

Therefore, we propose to simplify its evaluation using
Gaussian approximation of the mixture (25) obtained by

Algorithm 1 Importance sampling for evaluation of the
misclassification loss.
For each particle n do

1) generate samples of fictitious measurements y

(n)
t+1

2) Compute weights (24) using y

(n)
t+1,

3) Compute expected value ĉ, and L(Ĉ(Z(k)), X(n)),
Compute the loss function via (31).

moment matching:
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.

Then, entropy (28) is approximated by the entropy of
the Gaussian distribution

H(y
t

) ¥ 1
2 log [(2fie) |‡

y

|] . (30)

Suitability of the approximation with be compared to
numerical integration of (15) in Section 4.

Remark: In this Section we assume mutual information
of the predictive density for simplicity. More complex
schemes can be designed using posterior density.

C. Evaluation of the misclassification loss

Evaluation of the misclassification loss (22) is harder
than that of the mutual information, since we consider
posterior estimates

q̂
t+1(l) =

ˆ
p(q

t+1(l)|x
t+1)p(x

t+1|y1:t+1)dx

t+1,

that are functions of y

t+1 and the expected value (22) is

I
fn,t+1 =

Nÿ

n=1

Kÿ

k=1

ˆ
p(y

t+1|x
t+1)p(x

t+1|x(n)
t

)◊ (31)

◊ (q̂
t

(i
k

) < q & q
t

(i
k

) > q) dx

t+1dy

t+1.

Similarly to (28), integration in (31) needs to be approx-
imated.

Since (22) is an expected value, we may use the
importance sampling procedure to draw N samples of
x

t+1, y

t+1 and approximate (31) by summation. In e�ect,
this algorithm works as generation of fictitious mea-
surements y

t+1 and application of the particle filter to
these measurements. The algorithm is summarized in
Algorithm 1.

In principle, we can generate more samples of y

t+1
to achieve better approximation. However, since multiple
copies of particles are present in (23) due to the resam-
pling operation, approximation described in Algorithm 1
was found to be su�cient for simulations.



D. Extension of the horizon

The considered one-step-ahead optimization can be
formally extended to receding horizon optimization.
However, the implied computational cost grows expo-
nentially. Future extensions must tackle two problems.
First, the particle degeneracy on the horizon. Since
integration of the loss functions is based on the empirical
approximation, the increase of unknowns further reduces
quality of approximation of the integral loss function via
importance sampling. More particles is then necessary
to preserve accuracy. Second, the number of potential
positions of the UAVs grows exponentially. This may be
improved by replacing regular grid by random grids, e.g.
via particle filtering with good proposal density, [11].

IV. Results

A hypothetical 1 hour long release of radionuclide
41Ar with half-life of decay 109.34 minutes was sim-
ulated. Bayesian filtering is performed in time steps
t = 1, . . . , 18, with sampling period of 10 minutes.
This sampling period was chosen to match the sampling
period of the RMN which provides measurements of time
integrated dose rate in 10-minute intervals. The same
period was assumed for the anemometer. The simulated
release started at time t = 1 with release activity Q

i

=
1 ◊ 1e16 Bq, i = 1, . . . , 6.

Values of the measurements were simulated as random
draws from measurement model (11) with parameters
given by the dispersion model with the “true” param-
eters.

A. Release estimation without UAVs

Particle filter (Section II-E) with N = 100 was used
to obtain estimates of the posterior. Contours of the
expected total dose at time t = 18 given observations
up to time t = 18 are displayed in Figure 4, center-
left. Note that the posterior values closely correspond
to the simulated values in the part close to the power
station. However, with growing distance from the power
station the accuracy of estimation of the wind field is
deteriorating. This is caused by sparsity of sensors of the
RMN. Posterior estimates of the correction coe�cient
◊

c,t

have very high uncertainty and estimation of the
bending of the wind field is not possible.

B. Validation of approximations

Quality of approximations of mutual information in-
troduced in Section III-B is now tested experimentally
on the results of assimilation. For illustration, the value
of mutual information is evaluated for a single UAV in
locations on a rectangular grid a1,t

œ {≠1, 0, . . . , 19}km
and a2,t

œ {≠1, 0, . . . , 19}km from the power plant.
Comparison of the Gaussian approximation (30) with nu-
merical evaluation of (28) using 100 integration points is
displayed in Fig. 2. Note that their di�erences are mainly
in scale of the the local maxima, however their locations
correspond very well. Since computational requirements

Fig. 2. Contour plot of estimated mutual information on the
grid of at. Left: Gaussian approximation (30); Right: numerical
integration of (28).

Fig. 3. Comparison of approximations for the misclassification loss
at time t = 11. Left: Importance sampling for a random draw of
xt+1, yt+1, Right: Integration using Gauss-Hermite quadrature.

of the Gaussian approximation are significantly lower, it
will be used in further experiments.

Similar experiment was performed for methods of eval-
uation of the miclassification loss function from Section
III-C. The main disadvantage of the importance sam-
pling approximation of (22) is its dependence on the
realization of the random draws. In Fig. 3, we compare
evaluation of the misclassification using the importance
sampling and Gauss-Hermite quadrature rules [12]. Note
that the results of the importance sampling estimate
higher values of the misclassification loss. However, the
position of the local minima are in good agreement
with the loss evaluated using Gauss-Hermite quadrature
rules. Therefore, we will use Algorithm 1 in the following
simulations.

C. Navigation of UAVs

The same release of the radioactive material as in
Section IV-A was simulated and its estimation was now
performed using data from RNM and UAVs that were
navigated to minimize the expected loss functions. Re-
sults of estimation are compared with the results without
UAVs in Figure 4 for both loss functions: mutual informa-
tion and misclassification count. Note that for both loss
functions the UAVs followed the plume and their data
allowed to improved estimation of the parameter ◊

c,t

and
thus of the bending of the wind field. However, trajecto-
ries of the UAVs di�er with the used loss function. Using



Fig. 4. Results of estimation of the radioactive plume, displayed via contour lines of the true (in case of simulated data) or expected
value of the total radiation dose. Left: simulated total dose. Center-left: estimated dose using RMN only. Center-right: estimated dose
using RMN+UAVs navigated using mutual information. Right: estimated dose using RMN+UAVs navigated using misclassification loss.
Position of sensors of the RMN is denoted by blue circles, path of the UAVs by connected circles, and locations of the inhabited areas for
the misclassification loss by red stars.

Fig. 5. Illustration of the considered loss functions for a single
position of a receptor on a rectangular grid at time t = 18.

the mutual information for navigation, the UAVs closely
follow contours of the plume. For the misclassification
loss, the UAVs navigate closer to the inhabited areas
(Figure 4, right, stars). In general, navigation using the
misclassification loss is more demanding since it is not as
smooth as the mutual information, Figure 5.

V. Discussion and Conclusion

Data acquisition is one of the most important tasks
after an accidental release of radioactive material into
the atmosphere. Reliable data are necessary for correct
assessment of the situation and planning of e�ective
countermeasures. Existing stationary radiation monitor-
ing networks were designed for this purpose, however,
they can not be arbitrarily dense. Therefore, the use of
mobile measuring devices and unmanned aerial vehicles
in particular is a very attractive complement of existing
networks. Similarly to the stationary monitoring net-
work, certain level of autonomy is desirable since human
supervisors of the power plant will be presumably occu-
pied with an e�ort to stop the leak rather than observing
its consequences. We have shown that current technol-
ogy allows to design fully autonomous system that is
capable to navigate the UAVs such that they maximize

the necessary information about the radioactive release.
We have compared two loss functions for navigation of
the UAVs. Each has its advantages and disadvantaged
for the application domain. Perhaps, a combination of
these may be desirable for operational use. However,
the presented result already demonstrate the value of
automatically navigated UAVs as a complement of the
existing stationary radiation protection network.
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