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Introduction
In case of an accident in a nuclear powerplant we need measured
radiological data in order to perform data assimilation and estimate
the spatio-temporal radiation situation on terrain.

� Up to now we assumed:
� radiation monitoring network (RMN) comprises only of

stationary measuring devices and its configuration is invariable

in time

� in Czech conditions: RMN is rather sparse and placed close to

nuclear powerplants ⇒ the number of available observations is

small

� New assumptions:
� there are some mobile units (cars, drones, .. whatever) equiped

with dose-rate detectors

� put in operation after the release start

� moving with a given speed

� their movement is restricted to some trajectorie (e.g. roads in

case of cars)



Introduction

� Our goal is to:
1. Develop a new data assimilation algorithm (based on particle

filtering) capable to take into account mobile devices and

optime their trajectories in order to obtain as much

infromation as possible given physical constraints (speed of

mobile devices, their trajectoris, etc.).

2. As a second goal can be considered development of a suitable

algorithm for designig of stationary monitoring network (the

best way of further extending the current RMN) using

long-term meteorlogical and release statistics in order to

maximize their capability of notice unusual radiation levels.



Available approaches and tools

� Tools for spatial modeling:
� krieging or regression krieging (Melles et al., 2011)

� Gaussian models (Zidek et. al, 2000)

� Monte Carlo (Johannesson, 2005; Hiemstra, 2011)

� Loss functions defining the criteria of optimzation
� simulated annealing (Huevelink et. al, 2010)

� entropy optimization



Selected methods

We treat the problem as a decision task, where we have to choose
an action, a

�, from a set A = {a1, . . . , an} in order to minimize the
expected value of a loss function

a
∗ = arg min

a∈A
Ep(x |d)(L(a, X )|D), (1)

where
� X is the potential outcome of the action,
� L(a, X ) is a function mapping the space of all actions and

outcomes to the real axis
� D are the measured data,
� Ep(X |D,a)() is the operator of expected value

Ep(X |D)(L(a, X )) =
´

p(X |D, a)L(a, X ) dX , and
� p(X |D) is the probability of realization of a specific value of X

given realization of data D and action a.



Selected methods

This formalizm is rather general and its results will differ with
different choices of the loss function L and/or different
reprezentations of uncertainty. Indeed, many existing solutions may
be interpreted as various choices of these two factors. For example,
entropy minimization techniques choose logarithm of the probability
density function to be their loss function. In particular, (Zidek et.
al, 2000) considered X to be spatial distribution of the pollutant
with Gaussian distributed density. Different scenarios of
optimization are defined by their parameterizations.



Selected methods

� Stationary network: the set of actions A contains all
possible configurations of the measuring sites described by
their spatial coordinates. The space may contain networks of
various sizes. The uncertainty space X contains all possible
realizations of weather conditions and release scenarios. The
available data, D, are weather measurements recorded over a
period of time. An example of such optimization is described
in (Abida et. al, 2008).

� Mobile sensors: the set of sensors is usually fixed and the
action space A contains possible trajectories of the mobile
sensors. The uncertainty space, X , contains parameters of the
release and weather conditions. The measured data D

contains measurements of the actual weather and readings
from the stationary monitoring network.



Selected methods - Entropy optimization
The purpose of the locating new mobile measuring station is to
reduce uncertainty in the estimated parameters. The main idea
follows from the following equality:

H(X , Z |D, λ) = H(X |Z , λ, D) + H(Z |D, λ), (2)

where λ are “candidates” on observation locations and Z are
expected values of data measured in these locations. A common
assumption (Zidek et. al, 2000) is that the total entropy
H(X , Z (λ)|D) is constant for all locations λ since we are not
adding any new information. This is true only under assumption
that the entropy of measurements is independent of its location λ
and X . Rewriting (2) as

H(X , Z |D, λ) = H(Z |X , λ, D) + H(X |D, λ), (3)
= H(Z |X , λ, D) + H(X |D), (4)

we note that the entropy in X can not be changed by λ. However,
the conditional entropy H(Z |X , λ, D) can.



Navigation of mobile sensors using etropy loss

For the entropy loss function, we are to evaluate relation (3), where

H(X , Z |D, λ) =

ˆ
p(X , Z ) log p(X , Z ) dX dZ , (5)

H(Z |D, λ) =

ˆ
p(Z ) log p(Z ) dZ . (6)

We approximate estimated pdfs using empirical distributions given
by a particle filter:

p(X , Z |D, λ) =
�

i

w
(i)

p(Z |X , λ)δ(X − X
(i)). (7)

p(Z |D, λ) =
�

i

w
(i)

p(Z |X (i), λ). (8)



Substituting (7) into (5)–(6) we obtain:

H(X , Z |D, λ) =

ˆ X
i

w
(i)

p(Z |X (i), λ)δ(X − X
(i)) log

"
X

i
w

(i)
p(Z |X (i), λ)δ(X − X

(i))

#
dZ dX .

=

ˆ X
i

w
(i)

p(Z |X (i), λ) log
h
p(Z |X (i), λ)

i
dZ

=
X

i
w

(i)
H(Z |X (i)) (9)

H(Z |D, λ) =

ˆ X
i

w
(i)

p(Z |X (i), λ) log

"
X

i
w

(i)
p(Z |X (i), λ)

#
dZ . (10)

=
X

i
w

(i)
ˆ

p(Z |X (i), λ) log

"
X

i
w

(i)
p(Z |X (i), λ)

#
dZ . (11)



Given that the measurements are normally distributed,

p(Z |X (i), λ) = N (µ(i)
j

, (γµ(i)
j

)2), (12)

evaluation of (9) for (12) is relatively simple, since

H(z |X (i), λ) =
1
2

log(2π) + log(γ
�

k

µ(i)
j ,k)

H(X , Z |D, λ) =
1
2
k log(2πe) + k log γ +

�

i

w
(i)

�

k

log(µ(i)
j ,k).

However, evaluation of (10) is a complex integral which is hard to
evaluate. We propose three different approximations.



1. Gaussian approximation of the mixture (7) obtained by
moment matching:

p(Z |D, λ) = N (µz ,Σz), (13)

µz =
�

i

w
(i)µ(i),

Σz =
��

w
(i)µ(i)(µ(i))�

�
− µzµ

�
z .

Then, the entropy (10) is approximated by the entropy of the
Gaussian distribution

H(Z |D, λ) ≈ H̃(Z |D, λ) =
1
2

log
�
(2πe)k |Σz |

�
, (14)

where k is dimensionality of the covariance Σz .



2. Semi-Gaussian uses the approximation by the Gaussian
approximation only inside the log function in (10)

H(Z |D, λ) ≈ −
ˆ X

i

w
(i)

p(Z |X (i), λ) log [N (µz , Σz)] dz .

= −
X

i
w (i )

ˆ
p(Z |X (i ), λ)

»
−

1

2
log |Σz | −

1

2
(z − µz )Σ−1

z (z − µz )

–
dz.

=
1

2
log |Σz | +

1

2

X

i
w (i )

»ˆ
p(Z |X (i ), λ)(z − µz )Σ−1

z (z − µz )dz.

–
,

=
1

2
log |Σz | +

1

2

X

i
w (i )

ˆ
p(Z |X (i ), λ)(z�Σ−1

z z − µzΣ−1
z z − z�Σ−1

z µz + µ�zΣ−1
z µz )dz.

=
1

2
log |Σz | +

1

2

X

i
w (i )

h
(µ(i ))�Σ−1

z µ(i ) + tr(Σ(i )Σ−1
z ) − µzΣ−1

z µ(i ) − (µ(i ))�Σ−1
z µz + µ�zΣ−1

z µz
i

,

=
1
2

log |Σz | +
1
2

"
X

i

w
(i)

“
(µ(i))�Σ−1

z µ(i) + tr(Σ(i)Σ−1
z )

”
+ Σz − µzΣ

−1
z µz

#
,

where the first term is equal to (14) and the second term is its correction.



3. Numeric integration: where we first establish support of the
integral using approximation (13) to be

z ∈< µz − 3
�

Σz , µz + 3
�

Σz > . (15)

This support is discretized into M bins and integral (10) is
approximated by

H̃(Z |D) =
zmaxX

zm=zmin

(zm+1 − zm)

 
X

i
w

(i)
p(zm|X (i), λ) log

"
X

i
w

(i)
p(zm|X (i), λ)

#!
.

(16)

This technique does not scale well with increasing dimensionality of
the measurements.



Optimization - Simulation results

A hypothetical 1 hour long release of radionuclide 41Ar with
half-life of decay 109.34 minutes was simulated. Bayesian filtering
is performed in time steps t = 1, . . . , 18, with sampling period of
10 minutes. This sampling period was chosen to match the
sampling period of the radiation monitoring network which provides
measurements of time integrated dose rate in 10-minute intervals.
The same period was assumed for the anemometer. The simulated
release started at time t = 1 with release activity
Q1:6 = [1, 5, 4, 3, 2, 1]× 1e16 Bq.
Values of the measurements were simulated using a twin
experiment.



Optimization - Simulation results

Particle filter with N = 100 was used to obtain estimates of the
posterior. Estimates of the dose at time t = 24 given observations
up to time t = 12 are displayed via their mean value:



Optimization - Simulation results - single location
Evaluation of conditional entropy was performed on a rectangular
grid of λ = [λ1, λ2], λ1 =< 0, 20 >km, λ2 =< 0, 20 >km.
The value of conditional entropy for each location of λ is displayed
in Fig. 1. Note that their differences are negligible. However,
computational requirements of their evaluation differ significantly.
The Gaussian approximation is the easiest to compute, hence it will
be used in further experiments.

Figure: Contour plot of estimated conditional entropy on the grid of λ for

three approximations: Gaussian, semi-Gaussian and numeric, repectively.



Optimization - Simulation results - two locations, one fixed

An extension of the experiment was to consider a fixed position of
one mobile sensor at location λfix and optimize position the second
one. The results are in figure 2.

Figure: Entropy of the second measurement location for three selected

locations of the first measurement (denoted by red dot)..



Optimization - Simulation results - two mobile groups

The release is governed by meandering wind field:

Figure: Release given by meteorological forecast (left) and the twin

model representing real release (right).



Optimization - Simulation results - two mobile groups

We assume two mobile groups released after the release start. Tha
sampling period of mobile groups is 10 minutes. Their action radius
is given by their speed.



Optimization - Simulation results - two mobile groups



Optimization - Simulation results - two mobile groups



Optimization - Simulation results - two mobile groups



Misclassification loss
While various loss functions has been proposed in the literature, we
follow (Hueveling et. al, 2010) and define loss function to be
proportional to the number of incorrectly classified people in
evacuation zones

L(λ, X ) = αIfalse_positive + βIfalse_negative , (17)

where Ifalse_positive is the number of people incorrectly classified for
evacuation, and Ifalse_negative is the number of people that are
incorrectly classified to stay in the polluted area. It is computed as
a sum over all inhabited places indexed by j :

Ifalse_positive =
�

j

populationj × (Ĉj > C & Cj < C ),

Ifalse_negative =
�

j

populationj × (Ĉj < C & Cj > C ).

Here, C denotes a threshold for the total accumulated dose of the
pollutant.



Misclassification loss
For simplicity, we may assume to split the area around the power
plant into J districts, each representing a constant number of
inhabitants, e.g. 1000, which live approximately at given location,
ij , j = 1 . . . J, which denote the points of interest. The total
absorbed dose in these localities will be represented by a vector
c = [C (i1), C (i2), . . . C (iJ)].

Ifalse_positive =
J�

j=1

(ĉj > C & ĉj < C ). (18)

Ifalse_negative =
J�

j=1

(ĉj < C & ĉj > C ). (19)

and the loss function can be expressed in terms of expected value

L(a, X ) = L(Ĉ (λ), )

ĉ(λ) = E(c(X , Z )|λ). (20)



Misclassification loss

Expected value of the misclassification loss (17) may be computed
as

E(L(X , Z , λ)|λ) =

ˆ
p(X , Z |λ)L(Ĉ (λ), X )dXdZ ,

=

ˆ
p(Z |X , λ)p(X |λ)L(Ĉ (λ), X )dXdZ ,

=

ˆ
p(Z |X , λ)p(X |λ)L(Ĉ (λ), X )dXdZ ,

=
�

w
(i)
ˆ

p(Z |X (i), λ)L(Ĉ (λ), X (i))dZ ,

=
�

w
(i)

L
(i)(λ), (21)

L
(i)(λ) = E(L(Ĉ (λ), X (i))) (22)

Note that (21) is a sum of contributions from each particle (22),
where each contribution is an integral over Z .



Misclassification loss - importance sampling

Since (22) is an expected value, we may use the importance
sampling procedure with p(Z |X (i), λ) as its importance function
and drawing K random trials Z

(k), k = 1 . . . K . The final
approximation of (22) is then:

E(L(Ĉ(λ), X (i))) ≈
X p(Z |X (i), λ)

p(Z |X (i), λ)
L(Ĉ(Z (k)), X (i)) =

KX

k=1

L(Ĉ(Z (k)), X (i)),(23)

L(Ĉ(Z (k)), X (i)) = α
JX

j=1

(ĉj > C & ĉj < C) + β
JX

j=1

(ĉj < C & ĉj > C) (24)

ĉ =
X

l

C(X (l))w̃ (l), (25)

w̃
(l) = w

(k) p(Z (k)|X (l)λ)P
m w (m)p(Z (k)|X (m), λ)

. (26)

Note that (26) is the same formula as in the update of the particle
filter (). In this case however, the measurement Z

(k) is fictitious.



Misclassification loss - fast importance sampling

While evaluation of loss functions for each particle may be most
accurate, it is also computationally demanding. An alternative is to
use

E(L(X , Z , λ)|λ) =

ˆ �
w

(i)
p(Z |X (i), λ)L(Ĉ (λ), X (i))dZ ,

q(Z , i) =
�

w
(i)

p(Z |X (i), λ). (27)

By drawing K random couples {i (k), Z (k)} we may approximate the
whole loss function by the same functions as in (23)–(26), with i

replaced by i
(k).



Misclassification loss - Gauss Hermite quadrature

Integration of expected value of a Gaussian distribution can be
easily converted into the conditions of Gauss Hermite quadrature.

ˆ
1

σ
√

2π
exp(−1

2

“
z − µz

σ

”2
)L(z)dz =

˛̨
˛̨x =

z − µ√
2σ

, dz = 2σ

˛̨
˛̨

=
√

2σ

ˆ
1

σ
√

2π
exp(−x

2)L(
√

2σx + µ)

= π−
1
2

ˆ
exp(−x

2)L(
√

2σx + µ)

≈ π−
1
2

KX

k=1

wkL(
√

2σxk + µ),

where wk and xk are Gauss Hermite coefficients.



Misclassification loss - simulation results
We use the same scenario and the same grid as in case of entropy
for single points. The values of the misclassification loss obtained
by the Gauss-Hermite quadrature rule are displayed in figure 4. The
points of interests ij are all points on the λ grid. To study
sensitivity of the result to the chosen threshold, we set

C = kc

�

j

ĉ(ij)

for various choices of kc = {20, 1, 1/100}.

Figure: Evaluation of the misclassification loss function for various

locations λ.

Note that difference between these values is in the scale, however,
the shape of the loss is extremely similar.



Misclassification loss - simulation results

Sensitivity with respect to the selected point of interest was tested
by selecting only one point in i1. Results are displayed in Figure 5.

Figure: Comparison of contour plot of the misclassification loss for

different points of interest. Point of interest i1 is denoted by red dot.

The results are very similar to those obtained for the entropy loss.
However, evaluation of the misclassification loss is much more
computationally demanding ⇒ focus of efficient and parallel
implementation of the code.


