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Abstract
The early phase of radiation accident is characterized by minimum number of

measured data and high uncertainty in both atmospheric conditions and radia-
tion situation. Our goal is to provide an accurate method of radiation situation
assessment that is capable to respect the uncertainty and provide informative pre-
dictions of its evolution for the involved decision makers. We propose a state space
model based on atmospheric dispersion model, numerical weather model with lo-
cal corrections and random walk on the model corrections and release evolution.
This model is highly nonlinear and is estimated using sequential Monte Carlo.
Since the model is significantly more complex that previously considered mod-
els and its estimation with naive proposal densities become too computationally
demanding. We propose to construct a proposal density using problem specific
simplification followed by application of the Laplace approximation. Properties
of the resulting estimation procedure are illustrated on a twin experiment.

Keywords: radiation protection, atmospheric dispersion model, importance sampling
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1 Introduction

We are concerned with a scenario of a hypothetical accident in a nuclear power plant
followed by an atmospheric release of radionuclides. The radioactive e�uent forms a
plume that is moving over the terrain according to the current meteorological situa-
tion. Urgent protective measures must be introduced as soon as possible to protect the
public from harmful e�ects of ionizing radiation. The necessary countermeasures are
typically prescribed by the law and classified according to the expected radiation level
into several severity categories. Determination of these expected values is thus the most
important input for decision making of the crisis management authority. The most re-
liable source of information is direct measurement of radiation level. However, detailed
measurements are typically available only several hours or days after the release when
the radioactive plume has already passed. This time frame is known as the late phase,
and many post-accidents tasks can be defined to retrospectively analyze what happen.

In this paper, we are concerned with the early phase of an accident, i.e. the time
frame when the plume is still in the air over the monitored area. We seek a way how
to determine as much information as possible from the available measurements. In
this phase, the measurements are rather sparse since we can not use mobile measuring
devices but only the on-line measurements form the radiation monitoring network.
These sensors typically measure total radiation dose. The closest measurement points
are on the ring around the power plant, covering all directions of potential release.
In principle, it is possible to start to evaluate predictions of the accident consequences
within minutes from detection of an anomaly. Each new measurement should be used to
improve accuracy of the predictions as soon as possible to support the decision making
of the crisis management team.

This task is known in the environmental literature as data assimilation, and the
dominant methods in this field are interpolation (Eleveld et al., 2007; Winiarek et al.,
2010), variational approach (Jeong et al., 2005; Kovalets et al., 2009), genetic algorithms
(Haupt et al., 2009; Cervone et al., 2010). However equivalence of this task to statistical
estimation is known (Anderson et al., 1999), and statistical techniques such as Monte
Carlo Markov Chain (Senocak et al., 2008; Delle Monache et al., 2008) and sequential
Monte Carlo (Johannesson et al., 2004; Hiemstra et al., 2011) are gaining popularity.

Monte Carlo methods are usually considered to be computationally expensive, es-
pecially in cases with many unknown parameters. This is typically the case with the
classical particle filter (Gordon et al., 1993), where the transition probability is used
as the proposal density. Many general techniques for better proposal design were pub-
lished, for example (Oh and Berger, 1992; Pitt and Shephard, 1999; Cornebise et al.,
2008). Any of these methods has good potential to improve performance of the sequen-
tial Monte Carlo method since the uncertainty in the transitional density is much higher
than that in the observation density. Moreover, evaluation of the likelihood function for
a single particle is computationally expensive which makes this application an excellent
area where sophisticated adaptive proposals will have significant impact. As a first
step in this direction, we propose a method based on problem-specific simplification.
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The simplified posterior is then approximated using the Laplace method (Kass et al.,
1990). We show that this proposal significantly increases computational e�ciency of
the estimation procedure.

2 Early phase of a Radiation Accident

Release of radioactive material into the atmosphere is the last possible resort of any
accident in a nuclear power plant. It is an extremely rare event, however with se-
vere consequences for potentially many people living in proximity of the power plant.
Awareness of radiation security has been increased after the Chernobyl accident, and
almost every country is now equipped with monitoring network of on-line connected
receptors continually measuring radiation levels. At present, these measurements are
monitored by state authorities and stored for later use. The puprose of the network is
to serve the responsible decision makers to assess the situation in the case of radiation
accident. However, as recent experience from the Fukushima-Daiichi accident suggests,
the measurements alone are insu�cient since the expert group of decision-makers in
the early phase of the accident will not have enough time to analyze the data.

Therefore, we aim at creation of an automatic system that processes the measured
data online and continually produces prediction of radiation situation e.g. 2 hours
ahead. Continuous operation of such system would allow to estimate local corrections
of the weather forecast in the spirit of (Sloughter et al., 2010), and thus providing on-line
calibration of the weather conditions. Automated evaluation of predictions will allow
the decision makers to focus on practical issues without any delay caused by evaluation
of the measurements.

The challenge in the task is twofold. First, the procedure must be computationally
a�ordable to compute on a commodity PC. Second, the predictions should be considered
as trustworthy by the decision-makers. The latter challenge is particularly demanding
since there are almost no data sets on which it would be possible to validate the models.
Even in the case of Fukushima-Daiichi accident, no data from the close monitoring
stations in the early phase of the accident are available. For this reason, the research is
done on so called twin experiments, where the measured data are replaced by simulated
data obtained from atmospheric dispersion models with known parameters and weather
conditions. The task for estimation is to recover the parameters and weather conditions
from the simulated data.

An example of one such experiment is displayed in Figure 1. The typical mea-
surement network is rather sparse with two circles of receptors, the first one inside
the power plant area and the second in the closest inhabited villages. Note that the
radiation plume is rather narrow so only a few receptors may register radiation level
significantly higher that the radiation background. The task is to use these few data
points and predict the total absorbed dose two hours ahead.
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Figure 1: Twin experiment of a radiation accident. Left: position of nominal total
radiation dose accumulated 4 hours after the release; measurements sites are denoted
by triangles and points of interest are denoted by pentagons. Right: Simulated mea-
surements in the three radiation dose receptors with highest observed values.

3 State Space Model and its Sequential Monte Carlo

Estimation

The spatio-temporal distribution of the pollutant can be modeled by a discrete-time
stochastic process:

x

t

= f(x
t≠1, v

t

), (1)
y

t

= h(x
t

, w

t

), (2)

where x

t

is the state variable, y

t

is the vector of observations and f(·) and g(·) are known
functions transforming the state into the next time step, or observations, respectively.
Both transformations are subject to disturbances v

t

and w

t

which are considered to be
random samples from a known distribution.

The model (1)–(2) can thus be formalized in terms of probability density functions

y

t

≥ p(y
t

|x
t

), x

t

≥ p(x
t

|x
t≠1). (3)

Here, p(·|·) denotes the conditional probability density of its argument. By Bayesian

Filtering we mean the recursive evaluation of the filtering distribution, p(x
t

|y1:t), using
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Bayes rule (Peterka, 1981):

p(x
t

|y1:t) = p(y
t

|x
t

)p(x
t

|y1:t≠1)
p(y

t

|y1:t≠1)
, (4)

p(x
t

|y1:t≠1) =
ˆ

p(x
t

|x
t≠1)p(x

t≠1|y1:t≠1)dx

t≠1, (5)

where p(x1|y0) is the prior distribution, and y1:t = [y1, . . . , y

t

] denotes the set of all
observations. The integration in (5), and elsewhere in this paper, is over the whole
support of the involved probability density functions.

Equations (4)–(5) are analytically tractable only for a limited set of models. The
most notable example of an analytically tractable model is linear Gaussian (3) for
which (4)–(5) are equivalent to the Kalman filter. For other models, (4)–(5) need to
be evaluated approximately. Sequential Monte Carlo technique (Gordon et al., 1993;
Doucet et al., 2001) is based on approximation of the posterior density by a weighted
empirical density

p(x1:t|y1:t) ¥
nÿ

i=1
w(i)

t

”(x1:t ≠ x

(i)
1:t), (6)

where x1:t = [x1, . . . , x

t

] is the state trajectory, {x

(i)
1:t}n

i=1 are samples of the trajectory,
w(i)

t

is the weight of the ith sample, q
n

i=1 w(i)
t

= 1, and ”(·) denotes the Dirac ”-function.
The main appeal of Sequential Monte Carlo methods is in the fact that this approxi-

mation can be evaluated for and arbitrary model (3) given a suitable proposal function,
q(x1:t|y1:t), yielding

w(i)
t

Ã p(x1:t|y1:t)
q(x1:t|y1:t)

. (7)

Convergence of the approximation to the exact posterior has been studied theoretically,
e.g. in (Crisan and Doucet, 2002), and it was concluded that the error of the approx-
imation grows with time. One way to remedy the situation is the use of resampling

procedure, where the existing particles are copied or removed based on their w(i)
t

such
that the new particles have equal weights (Doucet et al., 2001).

An important task in the early phase of a radiation accident is prediction of its
future development. Prediction of the state trajectory for h time steps ahead, x

t:t+h

, is
given by:

p(x
t:t+h

|y1:t) =
nÿ

i=1
w(i)

t

hŸ

·=1
p(x(i)

t+·

|x(i)
t+·≠1). (8)

Thus the predictor is a combination of predictors for each Monte Carlo trajectory
weighted by the latest available weights. Note that the observation data enter the
prediction formula only via the weight w(i)

t

, (7). Hence, reevaluation of the predictions
for a new observed data is computationally cheap.
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Figure 2: Comparison of di�erent distributions with equal first two moments. All
distributions have the same mean value µ

t

= 1, but di�erent standard deviations “ = 0.1
(left) and “ = 0.3 (right).

3.1 Probability density elicitation

As any Bayesian technique, the sequential Monte Carlo is defined for models with fully
specified probability density functions. However, full distribution of measurement error
of a measuring device is typically not available. More often, the error of the measuring
device is characterized by two factors: (i) measurement range, and (ii) maximum error,
either absolute or relative. The full distribution function has to be either obtained
experimentally or assumed to belong to a chosen parametric family. In this text, we
assume that the characteristics of the measurements of quantity y

t

are available in the
form of its statistical moments:

mean(y
t

) = ytrue

t

= µ
t

, std(y
t

) = “µ
t

, (9)

for relative observation error, or std(y
t

) = ‡
t

, for absolute error. The first equality
represents the assumption of unbiased mean value of the measurements. The expected
standard deviation is set from the provided measurement error which is assumed to be
equal to 2 standard deviations.

The choice of the full distribution, p(y
t

), can be done via moment matching. The
following parametric forms have the same moments as (9):

y
t

≥ N (µ
t

, (“µ
t

)2), or N (µ
t

, ‡2
t

), (10)
y

t

≥ G(“≠2, “2µ
t

), (11)
y

t

≥ iG
1
“≠2 + 2, (“≠2 + 1)µ

t

2
. (12)

Here, N (µ
t

, ‡2
t

) denotes Normal distribution with mean µ
t

and variance ‡2; G(k, ◊) de-
notes Gamma distribution with shape parameter k and scale parameter ◊; and iG(–, —)
denotes the inverse Gamma distribution with shape parameter – and scale parameter
—. Comparison of these distributions for µ

t

= 1, and various “ is displayed in Figure 2.
Note that for relative error as low as 10%, all densities are very similar, their di�erences
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become more obvious for high relative error, when the gamma distributions assign very
low probabilities to the region around zero.

From these three choices, the Normal distribution (10) is typically favored since
it has the greatest entropy of all possible distributions (Dowson and Wragg, 1973).
However, this distribution has to be truncated if the variable is positive by the defini-
tion. On the other hand, the Gamma distribution seems a natural choice for positive
variables.

3.2 Release scenario

We assume a continuous release of radioactive pollutant from a nuclear power plant at
known location, [s1,pp

, s2,pp

] and known altitude s3,pp

. In vector notation, s = [s1, s2, s3]
will denote three dimensional vector of space coordinates. At time t, an amount of ra-
dioactive material of activity Q

t

is instantaneously released into the atmosphere forming
a radioactive plume which is subject to wind and dispersion. The radiation activity of
the plume is decreasing via radioactive decay.

3.3 Measurement model

The radiation monitoring network considered in this text is equipped by several dose-
rate receptors and a meteostation. The dose-rate receptors are of the Geiger-Müller
type with fixed operation range, typically from several nSv/h to Sv/h. From the me-
teostation we consider only the anemometer. Statistical properties of these sensors is
now evaluated.

The measured value of the radiation dose is a sum of natural background radiation,
y

nb

, and the dose from the contaminant, y
Q

. According to the studies of the gamma dose
receptors (Thompson et al., 2000), the error of measurement is typically proportional
to the measured dose with a constant of proportionality “

y

, typically in the range of
7–20%. Therefore, we assume that the measurements at ith receptor have moments

mean(y
i,t

) = y
nb,i

+ y
Q,i,t

, (13)
std(y

i,t

) = “
y

(y
nb,i

+ y
Q,i,t

), (14)

where y
nb,i

are long term averages of radiation background at the location. We choose
the inverse Gamma density,

p
G

(y
i,t

|x1:t) = iG(“≠2
y

+ 2, (“≠2
y

+ 1)(y
nb

+ y
Q

)). (15)

Technically, (15) should be truncated at support defined by the ranges of the device.
However, we avoid such complication since all measurements considered in this text are
well inside of the range of the device such that the truncated versions the distribution
is indistinguishable from (15).
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Accuracy of the anemometers is typically also available in terms of relative error on
the wind speed, v

t

, and constant error of wind direction, „
t

, i.e.

std(v
t

) = “
v

v
t

(s
meteo

),
std(„

t

) = ‡
„

,

where s

meteo

is the location of the meteostation. From all choices of possible distribution
(10)–(12) we select the inverse Gamma form (12). Distribution of the wind direction is
considered as normal with fixed variance, (10).

3.4 State space model of the scenario

In definition of the state space model, we follow Johannesson et al. (2004) and parame-
terize the release by a pu� model. However, we significantly extend the parametrization
to consider additional phenomena.

3.4.1 Wind field model

Accurate predictions of the wind field is the most critical variable in the task of predic-
tion of the radiation situation after the release. There are many numerical tools that
compute numerical prediction of the wind field on a grid. However, these predictions
may not be well calibrated for the location and may not be in agreement with the values
measured by the available anemometer. Therefore, we need to perform our own local
correction of the wind field. Due to sparsity of measurements, we need a really simple
parametrization of the model. We have chosen the following model

v
t

(s) = ṽ
t

(s)a
t

, (16)
„

t

(s) = „̃
t

(s) + b
t

, (17)

where ṽ
t

(s), „̃
t

(s) are the wind speed and wind direction predicted by the numerical
model at location s, respectively. In this text, we assume that the forecasted values ṽ
and „̃ are precomputed and do not change during estimation. Constants a

t

and b
t

are
unknown biases of the prediction model at time t. Correction of the wind field forecast
is then achived by estimation of a

t

and b
t

.
The constants a

t

and b
t

are expected to vary in time, with moments

mean(a
t

) = a
t≠1, std(a

t

) = “
a

a
t≠1,

mean(b
t

) = b
t≠1, std(b

t

) = ‡
b

.

Matching of these moments to the distributions yields

p(a
t

|a
t≠1) = G(“≠2

a

, “2
a

a
t≠1), (18)

p(b
t

|b
t≠1) = tN (b

t≠1, ‡
b

, Èb
t≠1 ≠ fi, b

t≠1 + fiÍ).

The Gamma density was chosen for a
t

since its variance is proportional to its mean
value. On the other hand, the variance in the direction is constant, hence we have
chosen the truncated Normal on the unit circle.
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3.4.2 Activity release model

We consider a continuous release of the activity into the atmosphere. Quantity of the
release is assumed to be time-varying but with slow dynamics of changes. Similarly to
other quantities, we assume that the change in the released activity is proportional to
its previous value, i.e. mean(Q

t

) = Q
t≠1, std(Q

t

) = “
Q

Q
t≠1, yielding Gamma transition

density
p(Q

t

|Q
t≠1) = G(“≠2

Q

, “2
Q

Q
t≠1). (19)

The constant of proportionality “
Q

governs our prior belief in variability of the release,
“

Q

æ 0 models stationary release. The model is inappropriate at the beginning of the
release when Q

t≠1 = 0. Therefore, we assume that detection of the release is performed
with the following prior model:

p(Q1) = G(–
Q1, —

Q1). (20)

3.4.3 Atmospheric dispersion model

The continuous release is approximated by a sequence of pu�s, (Zannetti, 1990), each
pu� representing the released material during one sampling period Èt, t + 1Í. The pu�
model is thus formed by a sequence of pu�s, each with its original activity of an instan-
taneous release {Q1, . . . Q

t

}. Concentration of the pollutant in the atmosphere from a
single pu� is:

C
i

(s, ·) = Q
iÔ

2fi3/2‡1‡2‡3
exp

C

≠(s1 ≠ l1,i,·

)
2‡2

1

2
≠ (s2 ≠ l2,i,·

)2

2‡2
2

≠ (s3 ≠ l3,i,·

)2

2‡2
3

D

. (21)

where s = [s1, s2, s3] are spatial coordinates of a receptor and l

i,·

= [l1,i,·

, l2,i,·

, l3,i,·

]
are coordinates of the center of the ith pu�. Time evolution of the pu� center is fully
determined by the wind field at the previous location

l1,·

= l1,i,t

≠ �· v
t

(l
t

) sin(„
t

(l
t

)),
l2,·

= l2,i,t

≠ �· v
t

(l
t

) cos(„
t

(l
t

)), (22)
l3,·

= l3,i,t

,

where v
t

(l
t

) and „
t

(l
t

) are given by (16)–(17).
Contrary to previous works, e.g. (Johannesson et al., 2004; Haupt et al., 2009),

concentration of the pollutant C(s, ·) can not be measured directly but only via mea-
surements of time integrated radiation dose rates y

t

[Sv]. Contribution of the pu� model
to the total dose measured on the jth receptor (13) is

y
Q,j,t

=
tÿ

i=1
c

i,j,t

Q
i

, (23)
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where the coe�cient c
i,j,t

is computed as (Raza et al., 2001):

c
i,j,t

= Ê K E µ
a

fl

1
Q

i

ˆ
t

t≠1
�

i

(s
Rj , ·, E) d·. (24)

Here, K is the dose conversion factor; E is the gamma energy produced by decay of
the assumed radionuclide; Ê is the ratio of absorbed dose in tissue to the absorbed dose
in air; fl is the air density. Fluency rate �

i

(s
Rj , E) from the ith pu� is calculated as a

three dimensional integral over the volume of the pu�:

�
i

(s
Rj , ·, E) =

ˆ
�

C
i

(s, ·) B(E, µr) exp(≠µr)
4fir2 ds, (25)

B(E, µ r) = 1 + k µr, k = µ ≠ µ
a

µ
a

. (26)

Ambient activity concentration C
i

(s, ·) is defined by (21). B is the linear build-up
factor, µ and µ

a

are linear and mass attenuation coe�cient, respectively; � µ R3 is
a spatial domain of integration (s œ �); and r = ||s

Rj ≠ s|| is the distance of spatial
locations s and receptor s

Rj .
Typically, the decision makers are concerned with the total commited dose up to

some reference time since the release start

D
j,t

=
tÿ

·=1

tÿ

i=1
c

i,j,t

Q
i

. (27)

The observation operator transforming activity concentration in the air to the time
integrated dose rate (23)–(26) is highly nonlinear. The relation (24) was derived only
for release of a single nuclide with one energy level E. In the case that the pu�’s inven-
tory consists a nuclide with more energy levels of gamma radiation or of a mixture of
nuclides, computation of the coe�cients (24) is more complex, however, the estimation
methodology works without any change.

3.5 Summary of the state space model

Summarizing results from previous Sections, the state of the considered dynamical
system is composed of the wind field model, and parameterization of all pu�s in the
pu� model, i.e.

x

t

= [a
t

, b
t

, Q1, . . . Q
t

, l1, l2 . . . , l

t

],
with measurements composed of one anemometer and m radiation dose measurements

y

t

= [v
t

, „
t

, y1,t

, y2,t

, . . . y
m,t

].

Parameter evolution model is then composed of all considered models

p(x
t

|x
t≠1) = p(a

t

|a
t≠1)p(b

t

|b
t≠1)p(Q

t

|Q
t≠1)p(l

t

|l
t≠1, a

t

, b
t

), (28)
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given by (18), (19) and the observation model is

p(y
t

|x
t

) = p(v
t

, „
t

|a
t

, b
t

)
mŸ

k=1
p(y

i,t

|Q1:t, l1:t).

3.6 Proposal density

A common choice of proposal functions q(x1:t|y1:t) in (7) is the transition probability

q(x1:t|y1:t) ©
tŸ

·=1
p(x

·

|x
·≠1). (29)

The main advantage of this choice is analytical and computational simplicity due to
the fact that the transitional probabilities in (7) cancel out to yield:

w(i)
t

Ã p(y
t

|x
t

). (30)

This simplification allows to compute more particles in situations where it is cheap to
draw the particles and evaluate (30). However, it is not the case in our scenario where
evaluation of (7) involves computation of integrals (24).

The problem as formulated above has two advantageous structural properties that
can be exploited to create e�cient proposals.

1. The availability of anemometer observations v
t

, „
t

provides almost direct observ-
ability of forecast biases a

t

, b
t

.

2. For the choice of inverse Gamma distribution for the likelihood (15), the Gamma
transition models (18),(19) are conjugate with posterior density in the form of
Gamma distribution, see Appendix A.

These properties motivate the following choice of the proposal density,

q(x
t

|x
t≠1, y

t

) = q(a
t

|a
t≠1, v

t

)q(b
t

|b
t≠1, „

t

)
q(Q

t

|Q
t≠1, y1:m,t

, s1:t)q(s
t

|s
t≠1, a

t

, b
t

),

where the first two factorized densities are:

q(a
t

|a
t≠1, v

t

) Ã p(v
t

|a
t

)p(a
t

|a
t≠1) = G(k

a

, ◊
a

), (31)
q(b

t

|b
t≠1, „

t

) Ã p(„
t

|b
t

)p(b
t

|b
t≠1) = N (µ

b

, r
b

), (32)

with shaping parameters

k
a,t

= “≠2
a

+ “≠2
v

+ 2,

◊
a,t

=
Ë
“≠2

a

a≠1
t≠1 + ṽ

t

v≠1
t

(“≠2
v

+ 1)
È≠1

, (33)

µ
b,t

= r
b,t

Ë
‡≠2

b

b
t≠1 + ‡≠2

„

(„
t

≠ „̃
t

)
È

,

r
b,t

= (‡≠2
b

+ ‡≠2
„

)≠1.

13



Algorithm 1 Sequential Monte Carlo estimation for early phase radiation assessment
Initialization: sample state variable x

t

from prior densities, p(x
t

).
At each time t do:

1. Collect measurements y

t

,

2. For each particle, do

(a) Update shaping parameters k
a,t

, ◊
a,t

, µ
b,t

, r
b,t

using (33) and sample new val-
ues of a(i)

t

, b(i)
t

from (31) and (32).
(b) Compute new locations of all pu� centers l

(i)
t

using (16),(17) and (22).
(c) Evaluate radiation dose coe�cients c

i,t

for each receptor.
(d) Update shaping parameters µ

Q,t

, ‡
Q,t

of proposal density (34) and sample
new values Q(i)

t

.

(e) Evaluate weights w(i)
t

using (7) and normalize them.

3. Resample the particles,

4. Evaluate prediction of the radiation situation for specified time horizon using (8).

Density (31) is obtained by conjugate update of Gamma densities, Appendix A. Density
(32) is derived using standard conjugate update of Gaussian densities. Derivation of
q(Q

t

|Q
t≠1, y1:m, s1:t) is more demanding since the likelihood is not conjugate. Therefore,

we propose to use the Laplace approximation (Kass et al., 1990)

q(Q
t

|Q
t≠1, y1:m,t

, s1:t) = tN (µ
Q

, ‡2
Q

, È0, ŒÍ), (34)

where moments µ
Q

and ‡
Q

are obtained numerically, see Appendix B for derivation.
The final algorithm is described in Algorithm 1.

4 Results

4.1 Simulation scenario

The simulated accident was a 1 hour long release of radionuclide 41Ar with half-life
of decay 109.34 minutes. Radionuclide 41Ar was chosen for two reasons: (i) 41Ar is a
noble gas which has no deposition and consequently no groundshine, hence we need
to calculate only the gamma dose rate from cloud shine; (ii) according to the tables
of radioactive isotopes (Browne et al., 1986), radionuclide 41Ar emits gamma radiation
at energy level 1293.57keV with branching ratio 99.1% and thus can be treated as a
mono-energetic nuclide.
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Bayesian filtering is performed in time steps t = 1, . . . , 18, with sampling period of 10
minutes. This sampling period was chosen to match the sampling period of the radiation
monitoring network which provides measurements of time integrated dose rate in 10-
minute intervals. The same period was assumed for the anemometer. The simulated
release started at time t = 1 with release activity Q1:6 = [1, 5, 4, 3, 2, 1] ◊ 1e16 Bq.

4.2 Model calibration

Documentation provided by manufactures of the gamma dose receptors was used to
establish their accuracy in terms of parameters introduced in Section 3.3. In our case,
the parameters were “

y

= 0.2 for the dose monitoring stations, “
a

= 0.1 and ‡
„

= 3 for
the anemometer.

Parameters of the transition model from Section 3.4.1 can be estimated from his-
torical data. Since the observations of the wind field as well as the meteo forecast data
are recorded, we can choose a fixed length window of historical data and estimate pa-
rameters “

a

, ‡
b

. For the presented example, we estimated “
a

= 0.6 and ‡
b

= 10 from a
continuous windows of historical data of 1000 samples. We assume that this estimation
procedure can be run recursively.

The numerical weather predictions were provided by the MEDARD system (Eben
et al., 2005) with grid resolution 9km. The assumed category of Pasquill’s atmospheric
stability was D.

On the other hand, we have no historical data from which we can estimate parame-
ters of the transition model for the dose, “

Q

and –
Q1, —

Q1. These were chosen as “
Q

= 1
for the evolution model and –

Q1 = 1, —
Q1 = 0 for the prior. Under this choice, the prior

is equivalent to the non-informative Je�rey’s prior for a scale parameter.

4.3 Pu� model implementation

Implementation details of the Gaussian pu� model and the observation operator trans-
forming activity have were carefully examined to achieve most accurate results with
minimum computational cost.

Activity concentration in air given by the dispersion model is evaluated using a
step-wise integration scheme and it is based on a di�erence scheme described in detail
in (Pecha et al., 2007). Integration (24) must be performed in both time and space
domains. Integration in time is done in sub-steps · that are equidistantly distributed
every 120 seconds. Spatial integration in (25) is approximated using Gauss quadrature
rules (Golub and Welsch, 1969). Due to symmetry in the physics behind the problem it
is beneficial to perform the integration in spherical coordinates. Since we assume that
all the receptors are placed 1m above the ground, the integration domain � around
the receptor in (25) can be approximated by a hemisphere. Its radius is determined
by “n/µ” method (Pecha and Hofman, 2011), where the integration limit considers
only those sources of irradiation (volumes with non-negligible concentration of activity)
located up to distance n/µ , n œ R from the receptor, where µ is a linear attenuation
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Figure 3: E�ective number of particles for two choices of proposal densities. Full lines
denote mean value over 10 Monte Carlo runs for each strategy. Minimum and maximum
value of the Monte Carlo study are used as borders of the shaded areas.

coe�cient [m≠1]. The calculations were performed with n = 5. To avoid integration over
void parts of �, i.e. those parts where the activity concentration is negligible or zero,
the integration is performed only over a subset of � having a non-empty intersection
with the box containing significant activity assigned to ith pu�. The size of the box
is determined by dispersion coe�cients ‡

i

in (21). This rather complicated choice of
integration domain increases the e�ectively of Gauss quadrature method and makes
results more accurate with given number of abscissas used in the method. The code
was implemented on a multi-core architecture.

4.4 Estimation results

The filtering posterior was evaluated using Algorithm 1 with 2000 particles and two
choices of proposal selection: (i) transition probability (29), and (ii) proposal obtained
by the approximate conjugate statistics on a, b and Laplace proposal on Q

t

, Section 3.6.
In large sample limit, these two proposals should produce the same results, however, for
limited number of particles, the e�ciency of the proposal density varies significantly.
This is demonstrated by average number of e�ective particles

n
eff,t

=
A

nÿ

i=1
(w(i)

t

)2
B≠1

.

In Fig. 3 is comparison for both strategies in terms of n
eff,t

. Note that especially at
the beginning of the study, the tailored proposal of Section 3.6 is more than ten times
more e�cient, therefore, it will be used for all results in this text.
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E�ciency of the Laplace approximation for the released quantity Q
t

is very good, see
Fig. 4, where its posterior estimates obtained just after the first vector of measurements
that is influenced by Q

t

are displayed. The histograms cover at most one order of the
Bq scale with significant mass concentrated around the true value.

Figure 4: Posterior distributions of the released activity Q
t

in time t = 1, . . . , 6. True
values are denoted by vertical blue lines at [1, 5, 4, 3, 2, 1] ◊ 1e16 Bq, respectively.

4.5 Prediction results

One important task in the early phase of the radiation accident is the ability to extend
the results of filtering to short term predictions. This can be easily achieved in sequential
Monte Carlo using equation (8). Note that the future trajectory depends on the wind
speed and direction that can change rapidly and is therefore highly uncertain. Any
observation is then very valuable since it considerably reduces the uncertainty about
reality. This is illustrated in Fig. 5 via predicted trajectories of the pu� centers after 4
hours from the start of the release using di�erent data. The most uncertain situation
is at the time of the release, t = 0, when no data are available. With incoming data
in time, the uncertainty is greatly reduced, the narrow part of the trajectories ends at
point for which the observed data are available, while the ever widening part is the
prediction.
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Figure 5: Trajectories of the first pu� in each particle at time t = 24 based on data
available at times t = 4, 8, 12, respectively from left to right.

The posterior densities (6) encode a lot of information that needs to be presented
to the decision makers. One of the most valued supporting material from the human
point of view is the map of isodose of the total commited dose (Bartzis et al., 2000).
These are provided by many software tools. However, in the probabilistic formulation,
the total absorbed dose has its own distribution. If we want to display the common
contour map, we need to specify probability at which we want to draw the contour. In
Fig. 6, contour plot based on the expected value of the cumulative dose is displayed.

Figure 6: Contour plots of the predicted accumulated dose in 4 hours after the release.
Left: prediction based on the uncorrected numerical weather forecast; Middle: “true”
value simulated by the twin experiment; Right: expected value of the predicted density
using data available up to 2-hours after the release.

However, for cautious decisions it may be more appropriate to draw contour map
of the worst case scenario. Such an estimate may be overly conservative.

Therefore, we propose to provide also histograms of distributions of the cumulative
dose at selected point of interest such as those displayed in Fig. 7. The locations of
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these points of interest were selected such that their distance from the release site is
growing, see Fig. 1. Note that while the predicted total dose at the closest location
does not change after t = 4, Fig. 7 top row, the prediction of the same quantity at
distant locations is improving with every data record, Fig. 7, middle and bottom row.

Figure 7: Distribution of the accumulated dose at di�erent locations after 4 hours
(t = 24) from the start of the release. Each row represents one location from Fig. 1,
L1–L3 from the top. Each column corresponds to the available information based on
measurements available at times t = 4, 8, 12, respectively.

5 Conclusion

Every accidental release of a radioactive material is burdened with uncertainty in the
release dynamics and meteorological conditions. The most demanding conditions for
data assimilation are in the early phase of radiation accident when only on-line mea-
surements from the radiation monitoring network are available. Bayesian methods and
Monte Carlo techniques in particular has been shown to be e�ective tools for data as-
similation and prediction of consequences of the accident under idealized conditions.
The idealization was typically either in considering important parameters of the release
to be known, and/or assuming direct observability of the concentration of activity, and
computational time not being an issue. However, in operational setting, many more
parameters needs to be considered as unknown which leads to infeasible computational
cost.

In this paper, we introduced parametric models for both the release dynamics and
the meteorological forecast. Parameters of these models are estimated together with
spatial distribution of the released material. Realistic model of available dose measure-
ments from a typical radiation monitoring network was created. Computational cost
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of the implied scheme is significantly reduced by introduction of application tailored
proposal densities. The proposal density is computed from a simplified model using
Laplace approximation. The particle filter then acts only as a corrector of the Laplace
approximation which requires much less computational e�ort.

The performed twin experiment confirms that a particle filter with moderate size
of 2000 particles is capable of computing realistic estimation of radiation situation as
well as its short term forecast. Careful analysis of the pu� model and its software
implementation ensures that the resulting assimilation and prediction algorithms can
be evaluated in real time on a contemporary personal computer. This is very promising
result for potential application of this methodology for automatic operational use.
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A Conjugate update of inverse Gamma likelihood

and Gamma prior

Consider the inverse Gamma likelihood p(y
t

|a) = iG(–, (– ≠ 1)a) and Gamma prior
p(a) = G(k, ◊). The Bayes rule yields

p(a|y
t

) Ã p(y
t

|a)p(a)

Ã ((– ≠ 1)a)–

�(–) y≠–≠1
t

exp
A

≠(– ≠ 1)a
y

t

B
ak≠1

◊k�(k) exp
3

≠a

◊

4
(35)

Ã –(–+k≠1) exp
1
≠a

1
(– ≠ 1)y≠1

t

+ ◊≠1
22

= G
3

– + k,
Ë
(– ≠ 1)y≠1

t

+ ◊≠1
È≠14

.

The normalization factor follows from the standard result of the Gamma density.
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B Laplace Approximation of shifted inverse Gamma

likelihood and Gamma prior

Consider likelihood in the form of a product of inverse Gamma distributions p(y
t

|a) =r
m

j=1 iG(–
j

, —
j

a + m
j

) and Gamma prior p(a) = G(k, ◊). The Bayes rule yields

p(a|y
t

) Ã p(a)p(y
t

|a) Ã ak≠1

◊k�(k) exp
3

≠a

◊

4
◊

mŸ

j=1

(—
j

a + m
j

)–j

�(–
j

) y
≠–j≠1
t

exp
A

≠—
j

a + m
j

y
t

B

(36)

Note that contrary to the non-shifted case in (35), the resulting density is not in a
standard form and the normalization can not be obtained analytically. We propose
to approximate (36) using Laplace approximation Kass et al. (1990). Specifically, we
approximate (36) by a probability density at its maximum value:

â = arg max
a

(log(p(a|y
t

))). (37)

Taking the first derivative of logarithm of (36)

d log(p(a|y
t

))
da

= d

da

Q

a
mÿ

j=1

C

–
j

log(—
j

a + m
j

) ≠ —
j

a + m
j

y
t

D

+ (k ≠ 1) log a ≠ a

◊

R

b

=
mÿ

j=1

C
–

j

—
j

—
j

a + m
j

≠ —
j

y
t

D

+ k ≠ 1
a

≠ 1
◊

, (38)

we note that it is a sum of rational functions in a and thus it is strictly decreasing.
Therefore, it has only a single intersection with zero at â, which can be e�ciently found
using numerical methods such as the Newton Raphson method. Once the maximum
value is established, we compute the second derivative of (38) at point â and set it equal
to inverse covariance matrix of the Normal distribution:

1
2‡≠2

a

=
mÿ

j=1

C
–

j

—2
j

(—
j

â + m
j

)2

D

+ k ≠ 1
â2 ,

to form the approximate posterior

p(a|y
t

) ¥ N (â, ‡2
a

).
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