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Abstract: The problem of evaluation of radiation monitoring network quality is 
considered. The comparison of possible network configurations is performed 
on simulated experiments where a twin model is used to simulate observed 
data. An assimilation procedure based on the particle filter approach is run for 
each configuration of the network. Specifically, multiple realisations of 
segmented Gaussian plume models are computed, each with different 
parameters. The simulated measurements from the network sensors are used to 
weight the likelihood of the parameter realisations, providing an empirical 
posterior distribution of the parameters. The quality of the network is then 
evaluated as an expected value of multiple loss functions with respect to the 
empirical posterior distribution. Our goal is to provide a tool that allows the 
decision-makers to compare the proposed configurations from various points of 
view. The results for a hypothetical discharge of radioactivity are presented. 
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1 Introduction 
Sensors of radiation monitoring networks are nowadays scattered around the world 

and monitor the global radiation situation for any severe radiation event. These sensors 

are so sensitive that it is possible, despite the initial high degree of uncertainty, to 
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reconstruct the significant scenario parameters by means of optimal blending with 

corresponding measurements. However, these measurements are too coarse for small-

scale events that may occur after a minor accident in a power plant. For this reason, every 

power plant has its own radiation-monitoring network that is connected to its control 

system. With increasing demands for radiation safety, the monitoring networks are 

expanded to improve their detection capabilities. Testing of the radiation networks is 

done in simulation mode when a hypothetical release of radioactivity is generated 

artificially by means of a twin model. A twin model is a mathematical model with 

simulated (artificial) “true” parameter values.   

A lot of work has been invested into the research of detectability of a small release 

(Urso, L. et al., 2012). Optimal configuration of monitoring networks was also 

considered (Zidek, J.V. et al., 2000; Abida, R. et al., 2008; Baume, O.P. et al., 2011; 

Melles, S.J. et al., 2011), using simulated annealing to minimise a chosen loss function. 

Since the optimisation should be performed over all possible uncertainties in weather 

conditions and conditions of the release, the computation needs to be simplified to 

achieve tractability. The most common simplifying step in the optimisation is the 

assimilation procedure. In the case of detectability, the assimilation procedure is a simple 

thresholding. It aims at situations where only one radiation sensor detects the release. In 

the simulated annealing optimisation, it is usually spatial interpolation or kriging 

(Heuvelink, G.B.M. et al., 2010), with weather- and space-independent variograms. This 

simplification approach is suitable when the network is dense enough that the 

interpolation provides sufficiently accurate results. 

In this contribution, we investigate evaluation of a network using Bayesian 

assimilation. The main advantage of Bayesian assimilation is that it is capable of 

representing uncertainty of the release and evaluating predictions of its evolution. The 

disadvantage is its computational cost, which is prohibitive in demanding applications of 

network optimisation. Therefore, we do not use the simulation annealing for optimal 

positioning of all sensors in a network, but provide only tools for evaluation of selected 

fixed configurations of a network. Thus, the resulting algorithm serves as a support for 

human decision-makers who design extensions of the network.  

To achieve computational feasibility we use a combination of a sequential Monte 

Carlo method with an analytical dispersion model (Johannesson, G. et al., 2004; 

Hiemstra, P.H. et al., 2011). Specifically, we use the segmented Gaussian plume model 

which was used in Bayesian assimilation in Pecha, P. et al., (2009). Parameters of this 

model are estimated by adaptive sequential Monte Carlo assimilation (Smidl, V. and 

Hofman, R., 2013). Quality of the estimation for a selected network is compared using 

two principal criteria: (i) error of spatial coverage of the dose after assimilation, and (ii) 

impact of the error of assimilation for the inhabitants (Heuvelink, G.B.M. et al., 2010). 

 

2 Decision theory framework 
The principal framework of network evaluation is the statistical decision theory 

which is commonly used in this context. The main result of decision theory under 

uncertainty is formally simple (Berger, J.O., 1985). If we are to choose which network, 

n
*
, from a given set of candidates,  Nn ,...,1 , is best, we are to choose the one that 

minimises the expected value of the chosen loss function  

                         ,,minarg* XnLEn XNn                                           (1) 
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where X models all uncertainty of the release, L() is the chosen loss function and EX() is 

the operator of expected value   dXXnLnXpXnLEX ,)|()),((  .  

The space of uncertainty X contains the following: (i) uncertainty of the release, given 

by its parameters , (ii) uncertainty in the weather conditions, typically modelled by 

corrections of the numerical weather forecast , and (iii) uncertainty in realisations of the 

measurements of the monitoring network, y. Naturally, the number of measurement 

points and their positions are influenced by configuration of the network, y(n).  

We will consider the following loss functions: (i) weighted mean square error, and (ii) 

correct estimation of the dose given by the factor of two metrics. The weighted mean 

square error is defined on the assimilated radiation dose rate D,  

     ,)()(,
2

XDXDwXnL jj

j

jmse


   

(2) 

where D(X) is the value of the radiation dose rate of the twin model (i.e., a model with 

simulated “true” values of the release and meteorological conditions) and D̂  is its 

estimate based on the observed data y(n). The sum in (2) is over all points of the 

computational grid. The optional weight wi is used to take into account the number of 

inhabitants living in proximity of the grid point. The factor-of-two criterion for correct 

dose classification is defined as   
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where M is either the total number of grid points or the total number of inhabitants living 

in the modelled area, and M(condition) is the number of grid points or inhabitants 

satisfying the condition in the argument.  

A key element of both loss functions is the estimate of the radiation dose rate D̂ . 

This is a result of assimilation with measurements y. The assimilation procedure thus 

strongly influences the results. Due to the small amount of information provided by these 

measurements, we assume that only few selected parameters of the release are 

assimilated to provide D̂ . These parameters will be denoted by asim . The estimate of the 

radiation dose rate is provided by a numerical atmospheric dispersion model 

 otherasim yMD  ,)(ˆ   which is provided by the AMIS procedure (Šmídl, V. and 

Hofman, R., 2013). 

  

3 HARP  dispersion  model (HAzardous Radioactivity Propagation) 
The environmental code HARP with dispersion model based on segmented Gaussian 

plume model (SGPM) was found to be fast enough to be deployed in the sequential data 

assimilation procedures. The model validation benchmarks have proved sufficient 

agreement with similar European codes, e.g. COSYMA and RODOS (Pecha, P. and 

Pechova, E., 2002). More detailed information is available online (HARP, 2011).  

The time dynamics of the discharged radioactive material is partitioned into a number 

of fictitious one-hour consecutive segments s with equivalent homogeneous release 

source strength. Each segment of the release is spread during the first hour as a straight-

line Gaussian plume. As the material spreads during the hours that follow, the segment is, 

according to a given set of meteorological conditions, treated as a “prolonged puff” and 

its dispersion and depletion during the movement are simulated numerically by means of 

a large number of elemental shifts.  
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There are many model parameters that influence the shape of the plume: release 

source strength of activity Q [Bq.s
-1)

], release height, category of atmospheric stability, 

height of the mixing layer, terrain parameters, etc. From these parameters, we consider 

only Q to be assimilated from the measurements. All other parameters are given by their 

best estimated deterministic values. The weather conditions are supposed to be known 

from the numerical weather prediction. However, we calibrate the wind direction and 

wind speed by additive offset a, and multiplicative offset b, respectively, which are 

assumed to be unknown and different at each time step (Pecha, P. et al., 2009). The 

composition of discharged radionuclides in the release is assumed to be known and their 

physical-chemical form is important for determination of wet and dry depositions.  

Determination of groundshine and cloudshine dose rates RATEground  and  RATEcloud 

comes from the segmentation scheme of the continuous release. The external irradiation 

from cloud and from deposition is considered. The cloudshine is computed as a 

superposition of contributions from all hourly segments which are at time T still drifting 

over the terrain. The groundshine dose is a sum of contributions from deposition during 

the whole trajectory of the segment. Just at time T, each released segment s has relative 

index of its history  Ts ,...,  .  
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 We introduce the sum D = RATEcloud + RATEground which denotes the total dose rate 

[mSv.h
-1

] at location coordinates l exactly at hour T after the release starts. Index r runs 

over all radionuclides, each nuclide having a decay constant of r [s
-1

].  The error of 

measurements is assumed to be relative to the measured dose rates. Here we are using 

simplified expression (4) for the case of only one-hour release of one nuclide, 
137

Cs.  

 

4 Evaluation of the expected loss  
Evaluation of the expected loss (1) is achieved using importance sampling, where the 

expected value is replaced by a weighted average of the generated samples. The number 

of generated samples is I, with a running index i = 1, …, I. The weather conditions are 

sampled randomly from historical records, forming 
(i)

. The release conditions are 

sampled from available estimates, forming 
(i)

 (Pecha, P. et al., 2009). These samples are 

used to generate the twin model from which are generated the twin dose rates D
(i)

 and 

samples of the observations of all competing monitoring networks, y
(i,n)

, n = 1,…,N. The 

sampled data are then treated as true measurements to obtain the estimate of the 

assimilated parameters asim using a Bayesian assimilation procedure. The parameters 

asim are estimated using importance sampling by generating K samples, 
(k,i,n)

, k=1,…,K. 

Each of these samples has an associated weight  )(),,(),(),,( ,,| ii

other

nik

asim

ninik ypw  . 

For efficient sampling we use the Adaptive Multiple Importance Sampling (AMIS) 

procedure (Smidl, V. and R. Hofman, 2013). This procedure is based on generation of 

multiple populations of samples, where each population is sampled from an adaptively 

tuned probability density function. This adaptation significantly speeds up the 
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convergence to accurate estimates. Evaluation of the network performance criteria (1) is 

then approximated for all variants of the loss function (2) and (3) by:  

    
 



I

i

K

k

nik XnLwXnLE

1 1

),,( ),(,  (5) 

The whole procedure is summarised by the following pseudo-code: 

Initialise: select fixed parameters of the release other 

For i = 1, …, I 

Sample meteorological conditions 
(i)

 from an archive of meteorological data 

For n = 1, …, N 

 Generate measurements y
(i,n)

 using the twin model (HARP), 

 Run a chosen assimilation procedure (e.g. AMIS) using  y
(i,n)

, 

 Evaluate all loss functions of interest, 

Evaluate expected values of all loss functions (5). 

 

5 Results 

We performed a Monte Carlo study of simulated releases from Czech nuclear power 
plant (NPP) Temelin under I =150 different meteorological episodes. A hypothetical 
release of 

137
Cs with a one-hour duration is assumed. Starting dates of these historical 

meteorological sequences were randomly sampled from the whole year 2009. We tested 
three radiation monitoring networks (N =3) denoted as RMN 1, 2 and 3, see Figure 1. 
RMN 1 approximates the current monitoring network of NPP Temelin. It is comprised of 
two receptor circles: (i) an inner circle of on-fence receptors, and (ii) a sparse outer circle 
in the emergency planning zone (denoted with dashed line). Two other monitoring 
networks, RMN 2 and RMN 3, are possible extensions of RMN 1. The total number of 
receptors in both networks is 64. The number of samples in the AMIS was K =1000. 
 

 

Figure 1: Assessed radiation monitoring networks. Receptors are denoted with triangles. Left: 
Approximation of current RMN around NPP Temelin. Middle: Extension with uniform spatial 
coverage. Right: Extension with new receptors in towns and villages. 

 
5.1 Setup of the twin experiment 
The reference release used in the twin simulation was a one-hour release of 

137
Cs of total 

activity Q
twin 

= 5.0E+15 Bq.h
-1

. Twin simulations were carried out by the HARP model 
using hourly meteorological measurements from the NPP site that were considered to be 
spatially homogenous on the modelled domain. The measurements were sampled from 
the recorded meteorological conditions at the site collected during the year 2009. Release 
height was assumed to be 150 meters with no thermal uplift. The height of the mixing 
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layer and the dispersion coefficients were selected as their best estimates from the 
recorded Pasquill’s category of stability. Simulated measurements of the cumulative 
gamma dose rate from groundshine and cloudshine for all tested networks were obtained 
as samples from the perfect measurements given by the twin model. Measurement error 
was assumed normally distributed with the standard deviation set to 20% of the measured 
value. A small offset was added to simulate the natural background radiation level. 

Data assimilation was then performed for all candidate networks and meteorological 
situations for the first three hours, t = 1,2,3, of the release. To avoid identical twin 
experiments, assimilated models were propagated using gridded meteorological forecasts 
shifted one hour forward with respect to the artificial measurements. In each run, 
parameters estimated by the data assimilation procedure were: 

 Q1 - total activity released during the first hour 

 a t   - additive offset of the measured/forecasted wind speed, t =1,2,3 

 b t   - multiplicative offset of the measured/forecasted wind direction, t =1,2,3 
 

5.2 Statistical evaluation of performance of candidate grids 
Assimilation results were compared with true releases (twin simulations) using 

expected values (5) of the loss functions (2) and (3) in two variants. MSE (grid points) is 
the loss function (2) with unit weight summed over all grid points, MSE (inhabitants) is 
also (2) with weights wi set to the number of inhabitants. FA (grid points) is the loss 
function (3) with M having the meaning of the grid points of the computation grid, FA 
(inhabitants) is also (3) with M having the meaning of the inhabitants at the grid point.  

Results of assimilation are presented in Figure 2-left. There are boxplots for estimates 
of the magnitude of the activity release given by the ensemble for all three monitoring 
networks. We observe that the median for all networks is sufficiently close to the true 
value Q1 =5.0E+15 Bq.h

-1
.  In the case of RMN 1 we see the increased variability of 

estimates caused by the lack of gamma dose receptors covering a broader vicinity of the 
NPP.  

 

Figure 2: Left: Boxplots for ensembles of estimates of activity release Q1 for assessed networks 
(median, box at 25% and 75% quantile, and crosses denote outlying realisations). Middle: Values 
of the FA2 loss function. Right: Values of the MSE loss function. 

Medians of both FA2 loss functions for the tested networks are shown in Figure 2-
middle. On the one hand, we observe that RMN 2 with regularly spaced receptors 
attained higher values of the FA2 (grid points) over FA2 (inhabitants). On the other hand, 
RMN 3 with receptors placed in the inhabited sites attains a higher value of FA2 
(inhabitants). A similar trend is evident from the results for the MSE loss functions, 
Figure 2-right. RMN 2 performs better than RMN 3 in the case of MSE (grid points), but 
worse in the case of MSE (inhabitants). 
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6 Conclusion 
Various particular problems in the field are addressed by different optimisation tools for 

monitoring networks. Some of them can only support the planning and optimisation of 

network configuration (DETECT, 2011), and need to be combined with other methods 

for the purposes of decision-making. The assessment of monitoring network detection 

abilities was proposed here by means of comparing the assimilation results with the true 

values represented by the twin model. We proposed using the sequential Monte Carlo 

assimilation which fits well into the common Monte Carlo approach. The resulting 

algorithm is still computationally feasible due to application of the latest adaptive 

importance sampling techniques, such as the adaptive multi importance sampling 

(AMIS), and evaluates performance of the selected candidates of a radiation monitoring 

network. The algorithm will serve as a supporting tool for considerations of potential 

network extension by human decision-makers. 

The sequential Monte Carlo assimilation is an efficient tool for online Bayesian 

tracking of the radioactive plume propagation and an inverse modelling technique for 

reconstruction of the significant model parameters initially burdened by large 

uncertainties. Specifically, the source term re-estimation on the basis of assimilation with 

observations is mentioned here in the Appendix. It provides a more accurate prognosis 

for evolution of the radiological situation and a better identification of the most 

contaminated areas (e.g. comparison shown in Figures 3-left and 3-right). It can support 

decision-making under nuclear emergency related to the launching of urgent 

countermeasures on population protection. The threat of possible fatal health and social 

consequences in case of erroneously classified areas is reduced. Nevertheless, a lot of 

work should still be done, mainly in the field of multi-segment and multi-nuclide analysis 

of an accidental scenario.  
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Appendix:   

An assimilation run for a certain weather episode. Figure 3 demonstrates tracing of the 

plume up to 5 hours forward and inverse source term modelling. 

 

 

Figure 3: Left: Simple model prediction of dose rate:  nomM
nom

D   without accounting of 

measurements. Middle: Twin model:  twinM
twin

D  . Right: Assimilation scheme: 

 otherasim yMD  ,)(ˆ   - assimilation with the true release represented by the twin model. 

The assimilated parameters include ],,1[ baQasim   where Q1 is source strength of 

radioactive release [Bq.h
-1

], wind direction and wind speed are calibrated by additive 

offset a and multiplicative offset b, respectively. Magnitude of the release is estimated 

after the release goes through the time t=1 hour. Wind speed and wind direction are 

estimated independently in each step of the assimilation t = 1,…,5 hours. Assimilation 

results in Figure 3-right are compared with the twin model in Figure 3-middle. The value 

Q1nom in D
nom

  is 1.0E+15 Bq, while selected Q1twin in D
twin

  is 5.0E+15 Bq. Estimated 

value Q1 reconstructed from the assimilation process D̂ resulted in 5.6E+15 Bq. It 

represents an example of the inverse modelling technique. A huge error in estimation of 

the most impacted areas in Figure 3-left is evident with regard to the improvement based 

on assimilation in Figure 3-right.  

 

 


