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Abstract
The monitoring of a radiation situation around a nuclear power plant is a demanding task due to

the high uncertainty of all involved variables and availability of measurements from a sparse monitor-
ing network. Assessment of the situation requires an experienced specialists that may be unavailable
during critical times. Our goal is to provide an automated method of instantaneous radiation situation
assessment that does not underestimate its uncertainty. We propose a state space model based on the
atmospheric dispersion model, local correction of a numerical weather model, and a temporal model of
the released activity. This state space model is highly nonlinear and evaluation of the likelihood function
requires extensive numerical calculations. Sequential Monte Carlo method is one of the few possibilities
how to estimate the state recursively. Since the simple bootstrap approach yields an extremely compu-
tationally demanding algorithm, we investigate the use of existing techniques for the design of a more
efficient proposal density. We propose combining the Laplace approximation and various population
Monte Carlo methods. Data from an existing monitoring network were used to calibrate relevant parts
of the model. Performance of the methods in a real radiation emergency situation is evaluated in a
simulated experiment due to the lack of real data.

Keywords: radiation protection, atmospheric dispersion model, importance sampling, proposal density, pop-
ulation Monte Carlo, information geometry estimation
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1 Introduction

We are concerned with a scenario in which the release of radionuclides into the atmosphere occurs following
a hypothetical accident of a nuclear power plant facility. The radioactive effluent forms a plume that moves
over the terrain according to the current meteorological situation. Urgent protective measures must be
introduced as soon as possible to protect the public from the harmful effects of ionizing radiation. The
necessary countermeasures are typically prescribed by law and classified according to the expected radiation
level into different categories based on severity. Determining this expected value is therefore the most
important factor for the decision making of the crisis management authority. The most reliable source of
information is direct measurements of the radiation level. However, detailed measurements in all affected
areas are typically available only several hours or days after the beginning of the release. Therefore, it may
be too late to warn people in affected areas.

For this scenario, we aim to design an algorithm that processes the stream of measurements available
from radiation monitoring networks (RMN) and provides a prediction of the radiation situation in real time.
The algorithm combines techniques for simulation of dispersion of the pollutants in the atmosphere with
statistical evaluation of their probability using data from the RMN. This task is known in the environmental
literature as data assimilation, and the dominant methods in this field are interpolation (Eleveld et al.,
2007; Winiarek et al., 2010), variational approach (Jeong et al., 2005; Kovalets et al., 2009), and genetic
algorithms (Haupt et al., 2009; Cervone et al., 2010). These methods typically provide only point estimates
of the estimated parameters, without indication of their reliability. Reliability of these estimates is then
judged from complex sensitivity studies, such as (Twenhöfel et al., 2007).

An alternative to this approach is statistical estimation which is also known in this field (Anderson et al.,
1999). Indeed, the value of statistical techniques such as the Monte Carlo Markov chain (Senocak et al.,
2008; Delle Monache et al., 2008) and sequential Monte Carlo (Johannesson et al., 2004; Hiemstra et al.,
2011) has been demonstrated and the techniques are gaining in popularity. An obvious advantage of these
methods is their ability to evaluate the reliability of their estimates using only observed data. Moreover, the
sequential Monte Carlo (SMC) approach is able to process a continuous stream of data in real time, which is
necessary for a continuous monitoring system. We follow the pioneering work of Johannesson et al. (2004),
where a state-space model for the task of locating a source of the release was proposed and its estimation via
SMC was studied. We modify the state space model for our scenario using realistic conditions of a selected
power plant. We show that estimation of the new model from data provided by a sparse RMN via the
classical particle filter (Gordon et al., 1993) is computationally inefficient.

The main concern is then to find a strategy of generating efficient proposal densities. Many techniques
were proposed specifically for SMC, e.g. (Pitt and Shephard, 1999), other techniques are based on adaptation
of non-sequential techniques for the sequential scenario (Cornebise et al., 2008) and references therein. A
specific property of the studied model is a computationally expensive evaluation of the likelihood function.
Moreover, the likelihood is sharply peaked and the parameter evolution model has high variance. These
properties make this application an excellent area where sophisticated adaptive proposals have significant
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impact. We design an efficient proposal density by combining well known techniques (Pitt and Shephard,
1999; Cornebise et al., 2008) with lesser known concepts of information geometry (Kulhavý, 1996). We show
that this proposal significantly increases computational efficiency of the SMC procedure.

2 Radiation Accident

Awareness of radiation security has increased after the Chernobyl disaster, and every nuclear power plant is
now equipped with a network of radiation sensors surrounding the power plant. The sensors are connected to
the central emergency warning system and continually measure radiation levels. Evaluation of the radiation
situation and prediction of its evolution from these readings is very challenging for two reasons. Firstly, the
spread of the pollutant in the atmosphere is a complex stochastic process with many unknowns. Secondly,
the number of continually measured quantities is very limited. Each of the factors is now described in detail.

2.1 Dispersion of a Pollutant in the Atmosphere

The radioactive material is located in a very small area inside the power plant, hence the location of its release
is known with sufficient accuracy. After the pollutant is released to the atmosphere, its concentration, C,
depends mainly on the following phenomena: (i) advection by the wind, (ii) dispersion by turbulent processes
in the atmosphere, and (iii) radioactive decay of the pollutant and its deposition. The first two processes
are modeled by the following partial differential equation:

∂C

∂τ
+

3∑
k=1

uk
∂C

∂sk
=

3∑
k=1

Kk
∂2C

∂s2
k

. (1)

Here, τ is the continuous time, s = [s1, s2, s3] are spatial coordinates in the Cartesian coordinate system,
u = [u1, u2, u3] are wind speeds in the Cartesian coordinate system, and K = [K1,K2,K3] are diffusivity
coefficients parameterizing atmospheric dispersion. However, (1) is not analytically solvable for general
functional forms of uk and Kk. Various simplified solutions arise under different assumptions (Holmes and
Morawska, 2006).

In this paper, we consider the Gaussian puff approximation which is based on an instantaneous point-
source release of activity. It is obtained as an analytical solution of (1) for constants uk and Kk, and the
following boundary conditions (Hanna et al., 1982): (i) the concentration is approaching zero with increasing
distance for the source, (ii) the release source is infinitely small at t = 0, (iii) integral of the concentration
over the whole space is the original released activity, Q, in becquerel Bq.

Continuous release can then be approximated as a sequence of puffs, (Zannetti, 1990), released at discrete
time steps with sampling period ∆t, with symbol t being reserved for the current time. A puff with activity
Qκ is released during one sampling period starting at time τ = κ∆t and ending at τ = (κ + 1)∆t, and
temporal evolution of its concentration in continuous time τ is:
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Cκ(s, τ) = Qκe
−λ(τ−κ∆t)

(2π)3/2σ1σ2σ3
exp

[
− (s1 − l1,κ,τ )

2σ2
1

2
− (s2 − l2,κ,τ )2

2σ2
2

− (s3 − l3,κ,τ )2

2σ2
3

]
. (2)

Here, λ denotes the decay constant of the modeled radioisotope. For the purpose of evaluation of the
measurements the concentration is evaluated at discrete times t. Since t is generally used to denote the
current time, the index of the puff will be often used relative to the current time, i.e. κ = t − 1. Time
evolution of the location of the κth puff center is fully determined by the wind field at the previous location

l1,κ,t+1 = l1,κ,t −∆t vt(lκ,t) sin(φt(lκ,t)),

l2,κ,t+1 = l2,κ,t −∆t vt(lκ,t) cos(φt(lκ,t)), (3)

l3,κ,t+1 = l3,κ,t,

where vt(lκ,t) and φt(lκ,t) are the wind speed and wind direction at location lκ,t, respectively. Specifically,
l3,κ,t is the effective release height given by the height of the release plus the plume rise. For practical reasons,
the rate of dispersion is here parametrized using dispersion coefficients σk =

√
2Kkt, (Gifford, 1976).

Remark 1. The puff model described in this Section is only one of many approximations available. In this
text, we use the term dispersion model in the sense of a computer program that represents the spatial
concentration of a pollutant in a parametric form and is capable to compute its propagation in time given
the wind field and the new released activity. Such a model may include additional physical phenomena such
as dry and wet deposition of the pollutant, or terrain profile.

2.2 Continuous Monitoring System

A radiation accident has several phases that can be formally distinguished (Raskob et al., 2010): (i) prerelease
phase: an abnormal situation happened in the power plant, however, the radiation has not leaked outside
of the reactor building yet, (ii) early phase: the radiation material is being released from the power plant
into the atmosphere and the radioactive cloud is still within the monitored area, and (iii) late phase: the
radiation cloud has already passed. An example of a hypothetical release is displayed in Figure 1.

Radiation accidents are typically studied retrospectively from the data recorded in all phases of the
accident. More and more data are being measured in the late phase which allows to deduce what has
happened and what will be the final consequences. For example, aerial surveillance allows to measure
radionuclide deposition on the ground with high spatial resolution which allows simple interpolation to
obtain clear contour of the total dose. However, it is usually too late for the sheltering of citizens living near
the power plant that are in danger already during the early phase. Since there is no time to add sensors
before the early phase starts, we can use only data that are available routinely during normal operation of
the plant. This is predominantly the RMN which is built around a power plant, typically in circles with poor
spatial resolution, Figure 1. The amount of observed data provided by the RMN during a release is very
small, e.g. less than 100 scalar values in the release displayed in Figure 1. The aim is to process this data
recursively without the need of human interaction. This objective represents many challenges for modeling
and computational evaluation of the results.
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Figure 1: Simulation experiment of an accidental radiation release. Left: Simulated measurements of three
RMN sensors with the highest observed values. Right: Contour plot of the total ground-level radiation
dose accumulated during the first three hours after the release; locations of the radiation dose sensors are
denoted by pentagons; largest populated areas (points of interest) are denoted by triangles, crosses denote
centers of the puffs and circles are drawn around them with diameter 2σ1 (2).

First, meteorological parameters would only be available in the form of numerical predictions without
any correction from a larger set of meteorological data. Local calibration of the weather forecast is needed.
Second, the data available in the early phase are sparse in time and space. Note that the hypothetical release
in Figure 1 generated only eight data points on only a few sensors of the RNM. Uncertainty about the true
situation is therefore very high. If the continuous monitoring system is to be considered trustworthy by
the decision makers, it must admit this uncertainty. Underestimation of the uncertainty is considered as a
severe flaw of the system. Third, the procedure must be affordable to compute on an inexpensive hardware.
The use of expensive equipment is not justified since the algorithm will analyze measurements of the natural
background radiation most of the time.

3 State Space Model for Continuous Radiation Monitoring

The spatio-temporal distribution of the pollutant can be modeled by a discrete-time stochastic process:

xt = f(xt−1,vt), (4)

yt = g(xt,wt), (5)

where xt is the state variable, yt is the vector of observations and f(·) and g(·) are known functions
transforming the state into the next time step, or observation, respectively. Both transformations are subject
to disturbances vt and wt which are considered to be random samples from a known probability density.
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In principle, the state variable should contain the concentration, C, which is infinite dimensional since it
is a solution of the PDE (1). However, an estimation of such system from sparse measurements is difficult.
Therefore, we follow Johannesson et al. (2004) and approximate the spatio-temporal distribution of the
pollutant by an approximate deterministic model (in our case the puff model (2)) with unknown parameters.
The state xt then contains only the selected unknown input values of the dispersion model, the remaining
input values will be considered to be known parameters (i.e. internal parameters of the computer program,
Remark 1).

The deterministic dispersion model is treated as a mapping from the space of the state xt to the expected
values of the measurements, ŷt = η(xt). As an example of such mapping, the puff model from Section 2.1
will be used in this paper. Extension of the deterministic model to a full stochastic state space model thus
requires to choose transition probability density (4), and the measurement probability density yt ∼ p(yt|ŷt).
Previously published approaches differ in what quantities of the dispersion model are considered to be
unknown (belonging to the state variable xt) or known and thus internal to the deterministic dispersion
model. For example, the model of Johannesson et al. (2004) was designed for localization of unknown
source of radiation and the state variable was composed from the location of the source, lτ,0, and activity
of the released material Qt. All remaining variables, including the wind field were assumed to be known.
Further extension of the model for unknown dispersion coefficients is also available (Senocak et al., 2008;
Delle Monache et al., 2008).

The assumptions mentioned above are only partially relevant for the purpose of the continuous monitoring
system which is described in Section 2.2. The location of the source is well known. Sensitivity studies of
the parameters of the puff model (Twenhöfel et al., 2007) identified the following parameters as the most
significant: (i) quantity of the released material at each time step, (ii) the wind speed and wind direction.
Models for these two terms has been proposed in (Johannesson et al., 2004) and (Hiemstra et al., 2011),
respectively. The number of unknown parameters is much higher, however, we will analyze only these three
to illustrate the challenges of the problem.

The choice of the probability density of the measurements is relatively easy since it can be deduced from
the characteristics of the measuring devices. However, different types of measurements can be considered.
Measurement of the concentration C, which is assumed in all previous works, is too expensive for real
application. Existing RMNs are composed of sensors of the integrated dose rate, hence we have to design a
new observation model for this quantity. We will now shortly discuss all components of the model and the
choice of the involved probability densities.

3.1 Elicitation of Probability Density Functions

In Bayesian formalism, probability densities in (4)–(5) must be fully specified. However, exact shape of the
densities in the studied application is not known and must be either obtained experimentally or assumed.
For example, the manufactures specify accuracy of the measuring devices only by their relative accuracy in
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Figure 2: Comparison of different probability densities with equal first two moments. All probability densities
have the same mean value µt = 1, but different standard deviations γ = 0.1 (left) and γ = 0.3 (right).

percents of the measured value. This can be interpreted as two statistical moments of the distribution, e.g.

mean(yt) = ytruet = µt, std(yt) = γµt, (6)

for relative observation error, or std(yt) = σt, for absolute error. The first equality represents the as-
sumption of unbiased mean value of the measurements. The maximum measurement error provided by the
manufacturer is interpreted as being equal to 2 standard deviations.

The choice of the full density, p(yt), can be done via moment matching. The following parametric forms
have the same moments as (6):

yt ∼ N (µt, (γµt)2), or N (µt, σ2
t ), (7)

yt ∼ G(γ−2, γ2µt), (8)

yt ∼ iG
(
γ−2 + 2, (γ−2 + 1)µt

)
, (9)

Here, N (µt, σ2
t ) denotes Normal probability density with mean µt and variance σ2

t ; G(k, θ) denotes Gamma
density with shape parameter k and scale parameter θ; and iG(α, β) denotes the inverse Gamma density
with shape parameter α and scale parameter β. Comparison of these probability densities for µt = 1, and
various γ is displayed in Figure 2. Note that for relative error as low as 10%, all densities are very similar,
their differences become more obvious for a higher relative error, when the gamma densities assign very low
probabilities to the region around zero.

From these three choices, the Normal density (7) is typically favored since it has the greatest entropy of
all possible densities (Dowson and Wragg, 1973). However, this probability density has to be truncated if
the variable is positive by the definition, the other densities are more natural choices for positive variables.
Since they are almost equivalent, our choice of a particular form will be motivated primarily by analytical
advantages of their subsequent estimation.
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3.2 Release Scenario

In previous work, (Johannesson et al., 2004; Hiemstra et al., 2011), the model of the magnitude of the release
was split into the model of the first step of the release and a random walk on its temporal evaluation. Using
Gamma density, the model of the first step is:

p(Q1) = G(αQ, βQ), (10)

followed by random walk
p(Qt|Qt−1) = G(γ−2

Q , γ2
QQt−1), t > 2, (11)

where γQ governs the spread of the random walk.
However, random walk model of temporal evolution of the accidental release is highly unreliable due to

frequent abrupt changes, as demonstrated by events in the Fukushima Daiichi accident (Katata et al., 2012),
which was a sequence of rapid changes with only a few stationary periods. This would suggest the need for
a hidden Markov label field switching models (10) and (11). However, this would increase the complexity
of the evaluation scheme. Therefore, we propose to ignore the stationary periods and a priori assume that
the puffs are temporally uncorrelated, i.e. the prior (10) holds for all t. Moreover, we aim for completely
uninformative prior, i.e. for αQ = 1 and βQ → 0 for which (10) approaches the improper Jeffrey’s prior on
the scale parameter (Jeffreys, 1961). This model is suitable only if the measurements are informative about
the released quantity.

3.3 Wind Field Corrections

We assume that the radioactive pollutant is released from a nuclear power plant of known location, [s1,pp, s2,pp]
and known altitude s3,pp, vector notation, spp = [s1,pp, s2,pp, s3,pp]. From this point it is advected by the
wind field (3). While it is possible to obtain numerical weather forecast from various sources, its accuracy at
the power plant location is usually poor. An illustration of this fact is displayed in Figure 3 by comparison
of the wind direction obtained from the numerical weather forecast and from the meteostation at the power
plant.

Since accurate predictions of the wind field are the most critical variable in the task of prediction of the
radiation situation in the early phase of the accident, we need to calibrate the forecast for the location of
the power plant. Due to the limited amount of meteostations, we need a really simple parametrization of
the calibration. We follow (Hiemstra et al., 2011) and choose model

vt(s) = ṽt(s)at, (12)

φt(s) = φ̃t(s) + bt, (13)

where ṽt(s), φ̃t(s) are the wind speed and wind direction predicted by the numerical model at location s,
respectively. Constants at and bt are unknown biases of the weather prediction model at time t. Correction
of the wind field forecast is then achieved by estimation of at and bt. More complex models of the local
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Figure 3: Comparison of histograms of the wind direction at the location of the power plant for year 2008
from the numerical model (left) and observed data (right).

wind field are available, (Monbet et al., 2007), however, their calibration requires significantly more points
of measurement than we have in the area.

The constants at and bt are expected to vary in time, with moments

mean(at) = at−1, std(at) = γaat−1,

mean(bt) = bt−1, std(bt) = σb.

Matching of these moments to the densities (7) and (8) yields

p(at|at−1) = G(γ−2
a , γ2

aat−1), (14)

p(bt|bt−1) = tN (bt−1, σb, 〈bt−1 − π, bt−1 + π〉).

The Gamma density was chosen for at since its variance is proportional to its mean value and allows for
conjugate update. The variance in the wind direction is constant, hence we have chosen the truncated
Normal with support on the unit circle.

3.4 Measurement Model

Measurement of the local concentration of the pollutant C(s, τ) considered in (Johannesson et al., 2004; Haupt
et al., 2009) requires a large and expensive device. More affordable Gaiger counter typically measures a time
integral of radiation dose rates which is measured in sieverts per hour [Sv/h]. The radiation monitoring
network considered in this text is equipped with several radiation dose sensors and a meteostation. The
Geiger counters have a fixed operation range from several nSv/h to Sv/h. The meteostation is equipped
with an anemometer providing measurements of the wind speed and wind direction.

3.4.1 Integrated Dose Rate of the Puff Model

In this Section, we derive a mapping ŷt = η(xt) for the puff model from Section 2.1. The purpose is to
demonstrate computational cost of such operation, evaluation of the dose rate for a more complex dispersion
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model would be even more costly.
If a single puff (2) of activity Qκ is the only source of radiation, the jth sensor in the radiation monitoring

network in location sRj
would register dose cj,κ,tQκ, where the coefficient cj,κ is computed as (Raza et al.,

2001):

cj,κ,t = Kc

Qκ

ˆ t

t−1
Φ(sRj

, τ, E) dτ. (15)

Here, Kc = ωK E µaρ
−1 is a physical constant computed from the dose conversion factor K, the gamma

energy E produced by the decay of the assumed radionuclide, the ratio of absorbed dose in tissue to the
absorbed dose in air ω, the air density ρ, and the mass attenuation coefficient µa. Fluency rate Φ(sRj

, τ, E)
from the puff is calculated as the following three dimensional integral over the volume of the puff:

Φ(sRj , τ, E) =
ˆ

Ω

Cκ(s, τ) (1 + k µr) exp(−µr)
4πr2 ds. (16)

Here, ambient activity concentration C(s, τ) is defined by (2); k = (µ−µa)µ−1 where µ is a linear attenuation
coefficient (Raza et al., 2001); Ω ⊂ R3 is a spatial domain of integration (s ∈ Ω); and r = ||sRj

− s|| is the
distance of spatial locations s and sensor sRj

. The full puff model, i.e. a sequence of all puffs, contributes
to the jth sensor by dose

yQ,j,t =
K∑
κ=1

cj,κ,tQκ. (17)

The observation operator transforming activity concentration in the air to the time integrated dose rate
(16)–(17) is in the simplest possible form and it is still highly nonlinear. Analytical solution is not available
and the dose (17) must be evaluated numerically. Many methods were proposed to increase efficiency
of its evaluation, such as the “n/µ” method (Pecha and Hofman, 2011), however, it requires substantial
computational resources.

3.4.2 Measuring Devices

The measured value of the radiation dose is a sum of natural background radiation, ynb, and the dose from
the release, yQ (17). According to the studies of the radiation dose sensors (Thompson et al., 2000), the
error of measurement is typically proportional to the measured dose with a constant of proportionality γy,
typically in the range 7–20%. Therefore, we assume that the measurements at jth sensor have moments

mean(yj,t) = ynb,j + yQ,j,t, (18)

std(yj,t) = γy(ynb,j + yQ,j,t), (19)

where ynb,j is the radiation background at the jth sensor. We choose the inverse Gamma density,

p(yj,t|x1:t) = iG(γ−2
y + 2, (γ−2

y + 1)(ynb,j + yQ,j,t)). (20)

The value of natural background ynb,j is different for each sensor, however, it is relatively stable in time, see
measurements for the whole year 2010 in Figure 4 right. Since the variance of the measurements corresponds
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Figure 4: Natural background measured by selected sensors of the radiation network in May 2010.

well to the model (20), we consider ynb,j to be known and fixed at the average value on the sensor over the
previous year.

Accuracy of the anemometers is typically also available in terms of relative error of the wind speed, vt,
and constant error of wind direction, φt, i.e.

std(vt) = γvvt(smeteo), std(φt) = σφ,

where smeteo is the location of the meteostation. From all choices of possible densities (7)–(9) we select the
inverse Gamma form (9) for vt. Probability density of the wind direction φt is considered as Normal with
fixed variance, (7).

3.5 Summary of the State Space Model

Summarizing results from previous Sections, the state of the considered dynamical system is composed of
the wind field model and parameterization of all puffs in the puff model, i.e.

xt = [at, bt, Qt−K , . . . Qt, lt−K , l2 . . . , lt],

where lt−K is the location of the oldest puff that is still within the monitored area.
The vector of measurements is composed of one anemometer and J radiation dose sensors

yt = [vt, φt, yQ,1,t, yQ,2,t, . . . yQ,J,t].

Parameter evolution model is then composed of all considered models

p(xt|xt−1) = p(at|at−1)p(bt|bt−1)p(Qt), (21)

given by (14), (10) and deterministic model (3). The observation model is

p(yt|xt) = p(vt, φt|at, bt)
J∏
j=1

p(yQ,j,t|Qt−K:t, lt−I:t). (22)
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State space model (21)–(22) is designed for the purpose of continuous monitoring, where simplicity is
extremely important due to the lack of data (see Figure 1 left, for illustration). Therefore, many elements
that are in principle uncertain are considered to be known:

• Composition of the radionuclides in the release is critical for evaluation of the observations (18), since
majority of the parameters in (15) is known for specific radionuclides. Different composition of the
release would yield different measurements. For this purpose, many scenarios of potential power plant
faults are prepared with precomputed parameters of the expected release. We assume that the specific
scenario is selected from the list of prepared options in the pre-release phase of the accident by an
expert or an expert system of the power plant.

• Another important parameter is the temperature of the released material which influences the altitude
of the release. Once again, we assume that the temperature is available from the release scenario. In
this text, we consider a common scenario that the pollutant is captured in the containment for long
enough time to cool down to the temperature of the surrounding air and the height of the puff is then
equal to the height of the release.

• Dispersion of the pollutant depends on many more atmospheric parameters than just the considered
wind speed and direction. For example, the height of the mixing layer and dispersion coefficients. In
this paper, we set these parameters to their typical values for an aggregated parameter called Pasquill’s
category of stability (Hanna et al., 1982) which is provided by the meteostation.

• The error of approximation of the reality by the puff model can be taken into account only via the
measurement error (20). In practice, the error is spatially dependent and a detailed correction term as
in (Kennedy and O’Hagan, 2001) would be appropriate.

The accuracy of the presented model is thus very dependent on the correct scenario of the release which
provides all necessary input parameters for the dispersion model. Potential extensions of the state space
model may thus estimate the most likely scenario from a predefined set or any of the relevant parameters of
the model. Reliable estimation of these extensions is possible only with more measurements, provided e.g.
by unmanned aerial vehicles (Šmídl and Hofman, 2013).

4 Sequential Monte Carlo Estimation

The model (4)–(5) is fully specified by probability density functions (21)–(22). Sequential estimation of the
posterior state probability is based on recursive evaluation of the filtering density, p(xt|y1:t), using Bayes
rule (Peterka, 1981):

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1) , (23)

p(xt|y1:t−1) =
ˆ
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (24)
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where p(x1|y0) is the prior density, and y1:t = [y1, . . . ,yt] denotes the set of all observations. The integration
in (24), and elsewhere in this paper, is over the whole support of the involved probability density functions.

Equations (23)–(24) are analytically tractable only for a limited set of models. The most notable example
of an analytically tractable model is linear Gaussian for which (23)–(24) are equivalent to the Kalman filter.
For other models, (23)–(24) need to be evaluated approximately. Sequential Monte Carlo technique (Gordon
et al., 1993; Doucet et al., 2001) is based on approximation of the posterior density by a weighted empirical
density

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ(x1:t − x(i)

1:t), (25)

where x1:t = [x1, . . . ,xt] is the state trajectory, {x(i)
1:t}Ni=1 are samples of the trajectory (the particles), w(i)

t

is the weight of the ith sample,
∑N
i=1 w

(i)
t = 1, and δ(·) denotes the Dirac δ-function.

The main appeal of sequential Monte Carlo methods is in the fact that this approximation can be
evaluated for and arbitrary model (4)–(5) given a suitable proposal density, q(x1:t|y1:t), yielding

w
(i)
t ∝

p(x1:t|y1:t)
q(x1:t|y1:t)

. (26)

An important property of (26) is the possibility of recursive evaluation. However, it often converges to a
degenerate system where one particle has weight of 1 and the others zero. One way to remedy the situation
is the use of the resampling procedure, where existing particles are copied or removed according to their w(i)

t

so that the new particles have equal weights (Doucet et al., 2001).
An important task in the early phase of a radiation accident is prediction of its future development.

Prediction of the state trajectory for h time steps ahead, xt:t+h, is given by:

p(xt:t+h|y1:t) =
N∑
i=1

w
(i)
t

h∏
τ=1

p(x(i)
t+τ |x(i)

t+τ−1). (27)

Thus the predictor is a combination of predictors for each Monte Carlo trajectory weighted by the latest
available weights. Note that the observation data enter the prediction formula only via the weight w(i)

t , (26).
Hence, reevaluation of the predictions for new observed data is computationally cheap.

4.1 Choice of the Proposal Density

Proposal density is often the main factor in computational efficiency of the particle filter and was heavily
studied for this purpose. The optimal proposal density is (Doucet et al., 2001):

q(x1:t|y1:t) = q(xt|xt−1,yt)q(x1:t−1|y1:t−1),

q(xt|xt−1,yt) = p(xt|xt−1)p(yt|xt)´
p(xt|xt−1)p(yt|xt)dxt

. (28)

However, evaluation of the integral in (28) is computationally intractable and (28) is helpful only as a
theoretical concept. The goal is to approximate (28) as closely as possible, with many approaches how to
achieve it. From the range of possibilities, we will focus on the following options:
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• the original approximation q(xt|xt−1,yt) ≡ p(xt|xt−1) of Gordon et al. (1993), which is often called the
bootstrap approximation. The main advantage of this choice is simplicity of the resulting algorithm.

• local linearization of (28) via the Taylor expansion (Pitt and Shephard, 1999; Doucet et al., 2000),
which is also known as the Laplace’s approximation (Kass and Raftery, 1995).

• parametric representation of the proposal, q(xt|xt−1, θ), and estimation of the parameter using several
populations of particles. This technique is well known in the classical Monte Carlo methods, (Oh and
Berger, 1992; Rubinstein and Kroese, 2004), and has been used in sequential Monte Carlo in (Cornebise
et al., 2008).

Each of these approaches is well suited for models that meet their assumptions. For more complex models,
such as the one in Section 3, it is advantageous to combine them for different parts of the model to improve
the performance.

4.2 Problem Specific Proposal Density

The problem of generating good samples of parameters of dispersion models has already been studied in
Johannesson et al. (2004), where a combination of MCMC and SMC has been proposed. This is particularly
advantageous for estimating an unknown location of the source. However, this approach is not suitable for
the continuous monitoring system where evaluation of the likelihood function requires a computationally
expensive numerical routine, and the computational resources per each time step are fixed and limited.

On the other hand, we may use specific features of the scenario. Specifically, the radiation monitoring
networks were designed to measure quantities that are essential in prediction of the consequences. Therefore,
we have direct observability of the forecast biases at, bt from the anemometer (with large variance though),
and almost direct observability of the released activity Qt from the first ring of sensors in the proximity of
the power plant (Figure 1). These measurements are informative about the corresponding state variables,
but their accuracy is insufficient for exact estimation. Note that even a small error in the wind direction will
cause large error in readings of the radiation sensors.

Therefore we propose the following two stage proposal density:

1. Each state variable is estimated from the observed quantity that is the most informative. The proposal
density (28) is then conditionally independent as follows:

q[1](xt|xt−1,yt) = q(at|at−1, vt)q(bt|bt−1, φt)q(Qt|y1:t, l1:t)q(lt|lt−1, at, bt). (29)

2. Using the particles from the first stage, we choose a parametric form q[2](xt|θ), and estimate its
parameters using information geometric approach of Kulhavý (1996).

The first stage allows to follow rapid changes in the wind field and/or the released activity. The second stage
relaxes the assumption of conditional independence and provides proposal based on all measured quantities.
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The second stage can be repeated several times in the sense of population Monte Carlo method (Cappé et al.,
2004).

The family of population Monte Carlo (PMC) methods (Cappé et al., 2004) is based on the fact that the
full set of N particles is not sampled form the same proposal density, but it is split between M populations,
each of n[m] particles, m = 1, . . . ,M ,

∑M
m=1 n

[m] = N . Each population is sampled from different proposal
function q(xt|θ̂[m]),m = 1, . . . ,M . We will study three variants of the PMC:

PMC: the original algorithm of Cappé et al. (2004), where the samples from the mth population are used
to estimate the parameters θ̂m+1 and are discarded afterwards. The final estimate is then based only
on the samples from the Mth population. This is computationally inefficient but can be proven to
converge to the optimal solution.

AMIS: a way how to increase computational efficiency has been proposed by (Cornuet et al., 2012) using
the idea of deterministic mixture. Each parametric proposal generated by the previous populations is
interpreted as a component of a mixture density

q
[m]
AMIS(xt|θ) =

m∑
k=1

n[k]∑m
k=1 n

[k] q(xt|θ̂
[k]), (30)

and the weights (26) are reevaluated after each population. The estimates of the parameters θ̂[m+1]

are evaluated using all re-weighted samples. This approach improves computational efficiency, however
proof of convergence to the optimal value is not available.

mAMIS: a modification of the AMIS procedure that can be proven to converge to the optimal value (Marin
et al., 2012). It still uses the mixture density (30) but the parameter estimates are based only on the
sampled from the previous population. As a consequence, it is sufficient to recompute the weights
using (30) only after the last population.

From this point of view, the proposal density (29) from the fist stage is only a smart initialization of the
PMC.

4.3 First Stage: Update of Conditionally Independent Densities

For the choice of inverse Gamma density (20) for the likelihood of the measured wind speed, the Gamma
transition models (14) are conjugate with posterior density in the form of Gamma density. So is the Normal
likelihood of the wind direction and its Normal random walk model (14). The first two factorized densities
in (29) are then

q(at|at−1, vt) ∝ p(vt|at)p(at|at−1) = G(ka, θa), (31)

q(bt|bt−1, φt) ∝ p(φt|bt)p(bt|bt−1) = N (µb, rb), (32)
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with shaping parameters

ka,t = γ−2
a + γ−2

v + 2,

θa,t =
[
γ−2
a a−1

t−1 + ṽtv
−1
t (γ−2

v + 1)
]−1

, (33)

µb,t = rb,t

[
σ−2
b bt−1 + σ−2

φ (φt − φ̃t)
]
,

rb,t = (σ−2
b + σ−2

φ )−1.

Derivation of q(Qt|y1:m, s1:t) is more demanding since the likelihood (20) is not conjugate. We propose to
follow the Laplace’s method (Kass and Raftery, 1995), based on local linearization via the Taylor expansion.
The conditional distribution on the dose Qt is then:

q(Qt|y1:m,t, s1:t) = tN (µQ, σ2
Q, 〈0,∞〉), (34)

where algorithm for evaluation of moments µQ, σQ is described in Appendix A. Since Qt has positive support,
the general results from Appendix A has to be truncated.

4.4 Second Stage: Multiple Populations

Once we have an empirical approximation of the posterior in the form of empirical density from the first
stage, we may use it to initialize the population-based algorithms. We choose the parametric form to be

q(log at, bt, logQt|µθ,Σθ) = N (µθ,Σθ), (35)

which requires for an additional Jacobian in the evaluation of the likelihood function. Estimation of the
parameters θ = [µθ,Σθ] can be done via the cross entropy (CE) minimization (Rubinstein and Kroese,
2004). The idea of CE is to choose a value of the parameter θ as the one that minimizes the Kullback-
Leibler divergence between the empirical representation (25) and q(xt|θ). For parametric forms from the
exponential family, the minimum can be obtained analytically. Specifically, for the Normal distribution,
q(xt|θ) = N (µθ,Σθ):

µ̂θ =
∑
i

wix(i)
t , Σ̂θ =

∑
i

wix(i)
t (x(i)

t )′ − µ̂θµ̂′θ. (36)

Note however, that for extremely low number of effective samples, neff = (
∑
i(w

(i)
t )2)−1, this estimate would

be misleading since the covariance matrix may not be positive definite.
To derive a more robust solution, we note that the CE method is a special case of the geometric parameter

estimation (Kulhavý, 1996). Specifically, it is the maximum likelihood estimate which is sensitive to the lack
of data. Therefore, we propose to replace it by the Bayesian version of the geometric estimation, (Kulhavý,
1996, chapter 2):

p(θ|xt, wt) ∝ p(θ) exp (−neff KL(pemp(xt|y1:t), p(xt|θ))) , (37)

Here, pemp(·) denotes the approximate posterior (25), and KL(·, ·) is the Kullback-Leibler divergence. Sub-
stituting Normal distribution (36) into (37), we obtain a non-standard form of conjugate Bayesian update
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of its parameters. Conjugate prior for the Normal likelihood is in the form of Gaussian-inverse-Wishart

p(θ|xt, wt) = N (x̂[0], γ[0]Σθ)iW (ν[0],Λ[0]), (38)

with statistics x̂[0], γ[0], ν[0],Λ[0]. Posterior statistics in the sense of (37) are:

γ
[m]
t = γ[0]

1 + γ[0]neff
,

x̂[m]
t = x̂[0] + γtneff (µ̂θ − x̂[0]), (39)

ν
[m]
t = ν[0] + neff ,

Λ[m]
t = Λ[0] +

[
neff (Σ̂θ + µ̂θµ̂

′
θ − x̂tx̂′t) + 1

γ[0]

(
x̂[0](x̂[0])′ − x̂tx̂′t

)]
.

Note that (39) can approach (36) arbitrarily close for a very flat prior. However, informative prior regularizes
the parameter estimates in cases with very small neff . For this application, we propose to set the prior
statistics to match the moments of the unweighted samples from the first stage. This uniquely determines
statistics x̂[0] and Λ[0], while statistics γ[0] and ν[0] need to be chosen. The full algorithm for population
Monte Carlo setup of M populations is in Algorithm 1.

5 Results

5.1 Simulation Setup

The simulated accident was a release of radionuclide 41Ar with a decay half-life of 109.34 minutes. Radionu-
clide 41Ar was chosen because it allows us to use simplified formula (16) for evaluation of the dose. Bayesian
filtering is performed with a sampling period of 10 minutes, matching the sampling period of the radiation
monitoring network which provides measurements of time integrated dose rate in 10-minute intervals. The
same period was assumed for the anemometer.

Observations were sampled from distributions described in Section 3.4 with mean values evaluated from
the dispersion model. Integration (15) must be performed in both time and space domains. Integration in
time is done in sub-steps ∆t/5. Spatial integration in (16) is approximated using Gauss quadrature rules
(Golub and Welsch, 1969), and the “n/µ” method (Pecha and Hofman, 2011) with n = 15. The same
evaluation routines are used for the particles.

5.2 Model Calibration

Documentation provided by manufactures of the radiation dose sensors was used to establish their accuracy
in terms of parameters introduced in Section 3.4. In our case, the parameters were γy = 0.2 for the dose
monitoring stations, γa = 0.1 and σφ = 5 degrees for the anemometer.

Parameters of the transition model from Section 3.3 can be estimated from historical data. Since the
observations of the wind field as well as the meteo forecast data are recorded, we can choose a fixed length
window of historical data and estimate parameters γa, σb. For the presented example, we estimated γa = 0.2
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Algorithm 1 Population Monte Carlo estimation for the continuous monitoring system
Initialization: sample state variable xt from prior densities, p(xt). Select the number of populations M
and the number of particles in them, e.g. n[m] = N

M .
At each time t do:

1. Collect measurements yt,

2. For each particle, i = 1, . . . n[1] do:

(a) Update shaping parameters ka,t, θa,t, µb,t, rb,t using (33) and sample new values of a(i)
t , b

(i)
t from

(31) and (32).

(b) Compute new locations of all puff centers l(i)t using (12),(13) and (3).

(c) Evaluate radiation dose coefficients ci,t for each sensor using (15).

(d) Update shaping parameters µQ,t, σQ,t of proposal density (34) and sample new values Q(i)
t .

3. Evaluate statistics µ̂t, Σ̂t (36) for n[1] particles and set x̂[0] = µ̂t,Λ[0] = ν[0]Σ̂t.

4. For each population m = 1, . . . ,M − 1 do:

(a) Evaluate weights w(i)
t (26). PMC & mAMIS: only for the last population using proposal (35).

AMIS: for all previous samples using (30). Compute neff .

(b) Evaluate parameters x̂[m]
t , γ

[m]
t , ν

[m]
t ,Λ[m]

t using weights from step 4(a) via (39) and (36), and
recompute µ̂[m]

θ , Σ̂[m]
θ = 1

ν
[m]
t

Λ[m]
t .

(c) Sample particles in the n[m+1] population from (35) with µ̂[m]
θ , Σ̂[m]

θ .

5. Evaluate weights w(i)
t (26). PMC: for i from the last population. AMIS & mAMIS: for all samples

using (30).
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Figure 5: Release with constant release rate, known start and duration. Left: Average number of effective
particles over 100 Monte Carlo trials. Right: Average number of effective particles per one second of
execution time over 100 Monte Carlo trials.

and σb = 15 from a continuous windows of historical data of 1000 samples. This estimation procedure can be
repeated for new observations. The numerical weather predictions were provided by the MEDARD system
(Eben et al., 2005) with grid resolution 9km. The category of Pasquill’s atmospheric stability was D.

5.3 Idealistic Scenario with Known Release Time and Duration

As noted in Section 3.2, validity of the random walk transition model (11) for the released activity is
questionable. To verify if the data are sufficiently informative to justify the use of the temporally uncorrelated
prior (10), we simulated a release with constant release rate Qt from time t = 1, to t = 6, with Q1:6 =
[1, 1, 1, 1, 1, 1] × 1016Bq. This scenario allows for comparison with previous approaches that were using the
bootstrap proposal, e.g. (Hiemstra et al., 2011).

Results of estimation of the SMC with N = 1000 particles for various proposal densities are displayed in
Figure 5 in the form of boxplots of Qt together with the corresponding number of effective particles. The
following proposal densities are compared: bootstrap, particles are drawn from the transitional density
(21); Laplace, where all N particles are drawn from the first stage, i.e. N = n[1]; PMC, with 100 particles
in the first stage, 4 populations of 100 particles to adapt the parametric form, and finally 500 particles from
the last population; AMIS, with 100 particles in the first stage and 9 adaptive populations of 100 particles;
and mAMIS, with the same setup as AMIS. The bootstrap filter was run with the transitional density
(11). All other filters used the temporally uncorrelated prior (10) with uninformative parameters, αQ = 1,
βQ = 0. The use of the transition proposal in the population-based methods yields results overlapping with
those with the temporally uncorrelated prior (not shown in Figure 5 for clarity).

All methods have nearly identical execution time, since the most expensive operation is evaluation of
the moments of the likelihood (20) via (15)–(17) which is done N times for all methods. All methods were
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Figure 6: Release with constant release rate, known start and duration. Left: Estimates of the released
activity of the first puff, Q1 at times t = 1, . . . , 18, from a typical run of the SMC estimation. Right:
Distribution of the expected value of Q1 at times t = 1, . . . , 18 for 100 Monte Carlo trial runs of the SMC
estimation.

implemented in the C language and their execution time is measured. The number of efficient samples per
second of execution time is displayed in Figure 5 right.

Note that the most demanding part of estimation is for t = 1, . . . , 6 in which the new puffs are being
released. In this part, the bootstrap filter often degenerates to neff = 1, in spite of the fact that the initial
density (10) had its mean value at the simulated value 1016 Bq and low dispersion of 10%. Even for the
bootstrap proposal, the estimated parameters are close to the true value, Figure 6 right, hence the accuracy
of the point estimate may be sufficient for some tasks. However, the lack of reliable uncertainty bounds
makes the method similar to the optimization methods mentioned in the introduction. The Laplace method
yields a more efficient proposal, however, the estimated neff can be also very low, as in time t = 6, Fig
5, left. This is not surprising, since the Laplace’s approximation is not recommended to use if the number
of observations is low (Kass and Raftery, 1995). After t = 6, the puffs are no longer generated and then
Qt = 0,∀t > 6. In times t = 7, . . . 11, the puffs in the air are still close to the radiation sensors and thus
provide additional information about wind speed and direction. After t = 11 the radiation monitoring
network registers only measurements of the natural radiation background and the proposals (31)–(32) for
the wind speed and direction becomes optimal (28).
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Accuracy of the estimates provided by all methods is visualized in Figure 6 via boxplots of estimation
results for Q1 for all studied methods. The best results are for the AMIS method, since the variance within
a single run is preserved, and the method yields consistent results in the Monte Carlo study. This suggests
that the AMIS method does not have a systematic bias, or it is negligible in this application.

Another important conclusion from this experiment is that the ring of sensors near to the power plant
is sufficiently informative about the release activity and it is sufficient to consider uninformative and uncor-
related prior (10). This model can be reliably estimated by the proposed adaptive proposals, where both
components are important: the Laplace’s approximation is necessary to create the initial estimate, and the
population strategies allows further improvement even in situations with very low neff as demonstrated at
t = 6.

5.4 Continuous Monitoring

Test of continuous operation of the SMC was performed in a simulation of a sudden release of the pollutant.
The simulated release started at t = 12 and ended at t = 18 with Q12:17 = [1, 5, 4, 3, 2, 1] × 1016 Bq. The
initial samples represent the period of normal operation, which is supposed to be arbitrarily long. Results of
continuous estimation are displayed in Figure 7 for four selected time steps, t = 12, 15, 18, 21, corresponding
to the exact moment of the release, and 30, 60, 90 minutes after that. At each time step, a window of 12
puffs is estimated. During normal operation, the estimated activity fluctuates around Qt ≈ 1e10, because
ground-level dose from such a puff is much lower than the radiation background, as demonstrated on the
corresponding contour plot, Figure 7. Inaccurate estimation of the dose in this regime is thus insignificant
for the main purpose of the system.

The abrupt release of activity is immediately recognized, and its activity correctly tracked. When the
release is over, the estimated released activity returns immediately to the values that were estimated before
the release. This confirms informativeness of data from the first ring of the RMN.

The posterior densities (25) encode useful information which needs to be presented to the decision makers.
One of the most valuable supporting material from the human point of view are the contour plots of the
total committed dose (Bartzis et al., 2000), which is a superposition of contours from Figure 7. However,
in the probabilistic formulation, the total committed dose has its own posterior density, allowing to draw
contours of its quantiles, or a histogram of the quantity of interest in the points of interest, see Figure 8. An
important conclusion is that the radiological quantities simulated from the true parameters are well within
the highest posterior density regions and the procedure does not underestimate their uncertainty.

6 Conclusion

We studied issues related to the design of a fully automated system of continuous monitoring of a radiation
situation that would provide guidance for human decision makers during critical situations. Based on previous
work, we propose a stochastic model of the accident and a measurement model that suits the existing
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Figure 7: Continuous monitoring of a sudden release of activity. Top row: Boxplot of estimated activity
of the last twelve (hypothetically) released puffs, and its comparison to the simulated values (dashed line).
Bottom row: Contour plots of the mean value of the ground level gamma dose at each point on the
map. Clear space corresponds to the background level, solid lines in the contours correspond to levels
[1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2] Sv/h, respectively.
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Figure 8: Histograms of the total committed dose from a radiation accident in selected points of interest
(locations of the points of interest (POI) are displayed in Figure 1). Vertical line denotes the simulated
value.
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radiation monitoring networks. The model is highly non-linear and its evaluation requires a computationally
demanding numerical procedure. The main task was to sequentially estimate the state of the model including
its uncertainty bounds.

Bayesian methods and Monte Carlo techniques in particular have been shown to be effective tools for
estimation of such models. They have already been used for similar tasks using the bootstrap approach. We
have shown that the bootstrap filter is extremely inefficient in the considered setup and may significantly
underestimate the uncertainty of the estimate. We propose a two stage strategy of design of a new proposal
density based on combination of ideas of local linearization, population Monte Carlo and information ge-
ometry parameter estimation. The new proposal density significantly improved efficiency of the filter that
allows to evaluate much more informative estimates in the same computational time. The new proposal also
allowed to use a non-informative prior on the released activity, which simplifies tracking of abrupt changes
of the release rate.

With the proposed scheme of adaptation of the proposal density, the estimation can be run with only
1000 particles which is affordable to compute in real time on an inexpensive hardware. Moreover, efficient
proposal density allows to estimate more parameters of interest, e.g. the dispersion coefficients or Pasquill’s
category of atmospheric stability, in the future.

A Laplace Approximation of Shifted Inverse Gamma Likelihood

and Gamma Prior

Consider likelihood in the form of a product of inverse Gamma densities p(yt|Q) =
∏m
j=1 iG(αj , βjQ + mj)

and Gamma prior p(Q) = G(αQ, βQ). The Bayes rule yields

p(Q|yt) ∝ p(Q)p(yt|Q) (40)

∝ βαQ

Q

QαQ−1

Γ(α) exp (−βQQ)
m∏
j=1

(βjQ+mj)αj

Γ(αj)
y
−αj−1
t exp

(
−βjQ+mj

yt

)
.

which is not of any standard form and the normalization can not be obtained analytically. Following the
Laplace’s approximation, (Kass and Raftery, 1995), use local linearization via the Taylor expansion at the
point of maxima of (40):

Q̂ = arg max
Q

(log(p(Q|yt))). (41)

Taking the first derivative of logarithm of (40)

d log(p(Q|yt))
dQ

= d

dQ

 m∑
j=1

[
αj log(βjQ+mj)−

βjQ+mj

yt

]
+ (αQ − 1) logQ− βQQ


=

m∑
j=1

[
αjβj

βjQ+mj
− βj
yt

]
+ αQ − 1

Q
− βQ, (42)

we note that it is a sum of rational functions in Q and thus it is strictly decreasing. Therefore, it has only
a single intersection with zero at Q̂, which can be efficiently found using numerical methods such as the
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Newton Raphson method. Once the maximum value is established, we compute the second derivative of
(42) at point Q̂ and set it equal to inverse covariance matrix of the Normal density:

1
2σ
−2
Q =

m∑
j=1

[
αjβ

2
j

(βjQ̂+mj)2

]
+ αQ − 1

Q̂2
, (43)

to form the approximate posterior with its mean at the point of maxima, µQ = Q̂,

p(Q|yt) ≈ N (µQ, σ2
Q). (44)
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