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Abstract—Computational efficiency of the particle
filter, as a method based on importance sampling,
depends on the choice of the proposal density. Various
default schemes, such as the bootstrap proposal, can
be very inefficient in demanding applications. Adaptive
particle filtering is a general class of algorithms that
adapt the proposal function using the observed data.
Adaptive importance sampling is a technique based on
parametrization of the proposal and recursive estima-
tion of the parameters. In this paper, we investigate
the use of the adaptive importance sampling in the
context of particle filtering. Specifically, we propose
and test several options of parameter initialization
and particle association. The technique is applied in
a demanding scenario of tracking an atmospheric re-
lease of radiation. In this scenario, the likelihood of
the observations is rather sharp and its evaluation is
computationally expensive. Hence, the overhead of the
adaptation procedure is negligible and the proposed
adaptive technique clearly improves over non-adaptive
methods.

I. Introduction

The particle filter [1] is a popular method used in
object tracking and state estimation problems in general.
It is based on the importance sampling idea, where the
common choice of the proposal density is the bootstrap
proposal (i.e. the proposal is the transition density). The
simplicity of the bootstrap proposal and parallel nature
of the filter makes it suitable for implementation on par-
allel architectures [?], or field programmable logic arrays
(FPGA) [?]. However, the bootstrap approach is inefficient
especially for problems with sharp likelihood function.
More efficient filters can be obtained when the proposal
function is adapted in the sense of [2], i.e. it takes into
account the latest observation.

Many techniques of adaptive particle filters has been
proposed, e.g. [3], [4], [5]. However, their implementation
in hardware is difficult since their operations can not be
run in parallel or in a pipeline. Therefore, we seek an
adaptation procedure that can be run as recursively as
possible, which would allow efficient use of the pipeline in
an FPGA.

In this paper, we investigate the use of adaptive im-
portance sampling (AIS) approach [6]. It is based on a
parametric form of the proposal density, the parameters
of which are estimated from previously drawn particles.
The key feature of this approach is its ability to update

the parameters recursively for each realization of the
particle. The problems that needs to be addressed in
the context of particle filtering are initialization of the
parameter statistics and the association of the particles
from the previous step. The latter can be elegantly solved
by the marginal particle filter approach [7], the former
problem is more problem specific. Poor choice of the
initial statistics may have significant impact on the filter
performance and potentially lead to degenerate proposal.
We use some concepts from information geometry [8] to
prevent degeneration of the adaptation process.

Performance of the proposed AIS-PF algorithm is
demonstrated on the problem of tracking of atmospheric
pollution [?], with emphasis on tracking of radioactive pol-
lutant [9]. In a realistic setup of the current measurement
devices of the nuclear power plant, the observations are
available only in the form of integrated gamma dose rates.
This yields a model with a sharp likelihood and a transi-
tion model with high variance. These features make this
application an excellent area where sophisticated adaptive
proposals have significant impact. We show that the AIS-
PF algorithms significantly increases computational effi-
ciency of the estimation procedure.

II. Adaptive Importance Sampling
The idea of importance sampling is to approximate an

unknown probability density function p(x) by drawing
samples from a proposal function q(x) such that

p(x) = p(x)
q(x)g(x)∝̇

n∑
i=1

p(x(i))
q(x(i))δ(x−x(i)) =

n∑
i=1

w(i)δ(x−x(i)),

(1)
where x(i) are i.i.d. samples from q(x), and w̃(i) ∝ w(i) =
p(x(i))
q(x(i)) are their associated weights. Symbol ∝ is used to
denote equality up to normalization, i.e. the weights w̃
are multiplied by a constant such that

∑n
i=1 w̃

(i) = 1.
The main advantage of this approach is that under mild
conditions it converges to the unknown function p(x) with
probability one. However, the rate of convergence heavily
depends on the chosen proposal, which is difficult to choose
for a general problem.

An elegant solution is to choose the proposal function
from a parametric family, q(x|θ), and iteratively estimate
the vector of parameters θ from the sampled particles
[?]. The approach was further elaborated by [6] to show
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Figure 1. Illustration of the AIS algorithm for Example 1. Sequential generation of 1000 particles and recursive estimation of the parametric
proposal. Left: the sequence of simulated particles, x(i); middle: non-normalized weights w(i); right: evolution of the estimated parameters
of the proposal µ̂ and σ̂.

Algorithm 1 Adaptive Importance Sampling (AIS) algo-
rithm.
Init: set batch counter k = 0, initial statistics V[0], ν[0],
and number of samples in the batch nk.
Repeat until convergence:

1) Compute estimate of the expectation parameter
ψ̂

[k] = V[k]/ν[k], and update the parameter esti-
mates θ̂[k] .

2) Draw nk samples from q(x|θ̂[k]), and compute their
non-normalized weights

w(i) = p(x(i))

q(x(i)|θ̂
[k])

, i = 1, . . . , nk.

3) Set batch counter k = k + 1 and evaluate statistics
T[k], ν[k],

V[k] = V[k−1] +
nk∑
i=1

w(i)T(x(i)), (2)

ν[k] = ν[k−1] +
nk∑
i=1

w(i).

4) Evaluate convergence criterion.

consistency of the adaptive importance sampling (AIS)
scheme. The original algorithms is formalized for general
statistics, however, we will present it in the special case of
exponential families for clarity. The exponential family is
defined as

q(x|θ) = h(x) exp
(
η(θ) ·T(x)−A(θ)

)
, (3)

p(θ) = exp
(
η(θ) ·V− νA(θ)

)
, (4)

where η(θ) is known as the natural parameter and T(x)

as the sufficient statistics. The likelihood function (3) is
conjugate with the prior (4) with statistics V, ν. The
expectation parameter of the exponential family is ψ =
E(T(x)|θ]. Its significance is in the fact that it readily
provides a transformation from sufficient statistics to max-
imum likelihood estimates [8].

The idea of the AIS is to draw samples in batches,
indexed by k = 1, . . . ,K, of size nk and after each batch
compute the empirical sufficient statistics, T(x), of the
proposal distribution. The statistics are used to update
the estimate of parameter θ̂ which is used for generation
of the next batch. The full algorithm is adapted from [6]
in Algorithm 1. An example for better intuition of the
approach is now provided.

Example 1. Consider a proposal function in the form of
Gaussian q(x|θ) = N (µ, σ2). It belongs to the exponential
family (3) with assignments

ψ = [µ, σ2 + µ2], T(x) = [x, x2]

Thus, the update equation (2) computes weighted average
of the particles and their squares using the non-normalized
weights. The expectation parameter φ̂ is then only nor-
malization of the statistics by the sum of the weights. The
commonly used parameters of the Gaussian are µ̂ = θ̂1,
σ̂ =

√
ψ2 − ψ2

1 . The exponential family formulation is
thus a generalization of the common approach of moment
matching.

A simulation of the proposal from Example 1 with target
distribution p(x) = N (5, 1) was estimated by the AIS
(Algorithm 1) using nk = 1 and K = 1000 with initial
estimate µ[0] = 0, σ[0] = 0.4. The results of the AIS are
displayed in Figure 1. The initial variance of the proposal
was chosen intentionally low to achieve slow convergence.
Moreover, a realization with particularly slow convergence
was chosen to demonstrate a potential drawback of the
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Figure 2. Histogram of convergence of two variants of the AIS al-
gorithm for 100 runs. Left: original AIS. Right: AIS with forgetting
λ = 0.95.

method. Note that the statistics (2) are weighted by
non-normalized weights which can be rather high, e.g.
around 200 in Figure 1, middle. The likelihood of the
particle associated with such a weight is still very low.
The significance of the contribution of this particle to the
statistics creates a bias and slows down the convergence of
the algorithm. With parameters of the proposal converging
to the target density, the weights converge to one. In the
long run, their contribution outweighs contributions of the
particles with high weights. However, there may be ways
how to speed up the convergence.

The key attribute of the AIS is the possibility to shorten
the batch to nk = 1 and run the algorithm in completely
recursive manner. This is especially important in modern
hardware implementation such as the field programmable
logic arrays (FPGA). Therefore, we propose to use ex-
ponential discarding (forgetting) of the previous data to
preserve recursivity.

Proposition 2 (Forgetting in AIS.). Influence of the poor
initial conditions can be suppressed by exponential weight-
ing of the older contributions. The update of statistics (2)
in AIS is than:

V[k] = λV[k−1] +
nk∑
i=1

w(i)T(x(i)), (5)

ν[k] = λν[k−1] +
nk∑
i=1

w(i),

where 0 < λ < 1 is the forgetting factor.

Effectiveness of the Proposition 2 is tested in simulation
on the system from Example 1 via the number of samples
necessary to reach |µ̂k − 5| < 0.1. Histograms of the steps
to convergence from 100 samples are displayed in Figure
2.
Remark 3 (Population Monte Carlo). An alternative way
of dealing with poor initial conditions is the population
Monte Carlo approach [10], where only the particles from

the last batch are considered. This may be computation-
ally inefficient since the particles in the previous batches
may be relevant. An improvement was proposed in [?]
using Rao-Blackwellization. However, these techniques can
not be implemented recursively and we do not consider
them as competitors.

III. Particle Filtering

Consider a discrete-time stochastic process:

xt = f(xt−1,vt), (6)
yt = g(xt,wt), (7)

where xt is the state variable, yt is the vector of observa-
tions and f(·) and g(·) are known functions transforming
the state into the next time step, or observation, respec-
tively. Both transformations are subject to disturbances vt
and wt which are considered to be random samples from
a known probability density.

Sequential estimation of the posterior state probability
is based on recursive evaluation of the filtering density,
p(xt|y1:t), using Bayes rule [11]:

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1) , (8)

p(xt|y1:t−1) =
ˆ
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (9)

where p(x1|y0) is the prior density, and y1:t = [y1, . . . ,yt]
denotes the set of all observations. The integration in (9),
and elsewhere in this paper, is over the whole support of
the involved probability density functions.

Equations (8)–(9) are analytically tractable only for a
limited set of models. The most notable example of an
analytically tractable model is linear Gaussian for which
(8)–(9) are equivalent to the Kalman filter. For other
models, (8)–(9) need to be evaluated approximately.

A. Particle filter
The particle filter [1], [12] is based on approximation of

the joint posterior density by a weighted empirical density

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ(x1:t − x(i)

1:t), (10)

where x1:t = [x1, . . . ,xt] is the state trajectory, {x(i)
1:t}Ni=1

are samples of the trajectory (the particles), w(i)
t is the

weight of the ith sample,
∑N
i=1 w

(i)
t = 1, and δ(·) denotes

the Dirac δ-function.
The main appeal of sequential Monte Carlo methods is

in the fact that this approximation can be evaluated for an
arbitrary model (6)–(7) given a suitable proposal density,
q(x1:t|y1:t), yielding

w̃
(i)
t ∝

p(x1:t|y1:t)
q(x1:t|y1:t)

. (11)



For a choice of the proposal density in factorized form,
q(x1:t|y1:t) =

∏t
τ=1 q(xτ |xτ−1,y1:τ ), the weights (11) can

be evaluated recursively via:

w̃t ∝
p(yt|x1:t)p(xt|xt−1)

q(xt|xt−1,yt)
wt−1. (12)

Common choice q(xt|xt−1,yt) = p(xt|xt−1) is known as
the bootstrap proposal.
1) Marginal Particle filter: An alternative to sampling

from a full particle trajectory (10) is sampling only from
the predictive density (9). Under the empirical approxi-
mation of p(xt−1|y1:t−1), (9) becomes

p(xt|y1:t−1) =
n∑
j=1

w̃
(j)
t−1p(xt|x

(j)
t−1). (13)

The resulting filter has some theoretical advantages at
the price of higher computational cost [7]. Applying the
importance sampling idea, we obtain weights in the form

wt ∝
p(yt|xt)

∑n
j=1 w̃

(j)
t−1p(x

(i)
t |x

(j)
t−1)

q(xt|y1:t)
. (14)

Note, that in this case, the proposal density is not condi-
tioned on the previous value of the state variable xt−1.

B. Adaptive particle filtering
Proposal density is often the main factor in compu-

tational efficiency of the particle filter and was heavily
studied for this purpose. The optimal proposal density is
[12]:

q(x1:t|y1:t) = q(xt|xt−1,yt)q(x1:t−1|y1:t−1),

q(xt|xt−1,yt) = p(xt|xt−1)p(yt|xt)´
p(xt|xt−1)p(yt|xt)dxt

. (15)

Since evaluation of the integral in (15) is computationally
intractable and (15) is helpful only as a theoretical con-
cept. The goal is to approximate (15) as closely as possible,
with many approaches how to achieve it.

The approach of adaptive particle filtering introduced
in [2] is aiming to improve the proposal function by using
the measured data. Apart from the auxiliary particle filter,
it also advocates the use of Taylor series expansion of the
models (6)–(7). Its application yields an approximation
of the posterior density in the form of a Gaussian [13],
and is closely related to the Laplace’s approximation [14].
Specifically, it operates in two steps:

1) the maximum likelihood estimate x̂(i)
t is found for a

given value of x(i)
t−1, and

2) the proposal is a Gaussian density with mean value
x̂(i)
t and variance given by

Σ(i)
t = [ ∂

∂xt
log p(xt,yt|x(i)

t−1)].

The list of techniques for potential proposal generation is
rather long [15].

C. Adaptive Importance Sampling Particle Filtering (AIS-
PF)

Two problems need to be addressed for application of
the AIS algorithm in the context of particle filtering: (i)
association of the generated particles with those from
the previous step, and (ii) initialization of the proposal
parameters. Note that the generated samples in the AIS
procedure are no longer independent and the path sam-
pling (10) is thus hard to achieve. Therefore, more natural
candidate for extension of the particle filter is the marginal
particle filter (Section III-A1). Note that in this case, the
particles at time t have no relation to those in time t− 1.
However, this may be computationally inefficient since
evaluation of the marginal (13) is a O(n2) operation. This
approach will be denoted AIS MPF.

A computationally cheaper solution may be auxiliary
sampling from the mixture (13), i.e. for each new particle
an index j is sampled and the weight is

w̃t ∝
p(yt|xt)w̃(j)

t−1p(x
(i)
t |x

(j)
t−1)

q(xt|y1:t)
. (16)

This approach was proposed in [16] and will be referred to
as AIS auxiliary PF.

A more challenging problem is the choice of initial statis-
tics V [0], ν[0] and thus the initial values of the parameter
θ̂[0]. We may consider three basic scenarios: (i) naive,
where the initial statistics are build using propagation of
the previous parameter estimates θ̂[K]

t−1, (ii) the Laplace
approximation, where the initial statistics are build around
the maximum likelihood estimate θ̂t found e.g. by a nu-
merical method, and (iii) generation of a population of
particles of size n1 and estimation of the initial statistics
from it; the particles are discarded afterwards.

Each of these options represents a compromise between
computational simplicity and effectiveness. The main dif-
ficulty of the first two methods is the choice of the pa-
rameter ν[0] since it represents the relative non-normalized
weight of the initial statistics. Note that any unlikely real-
ization from the proposal may increase the non-normalized
weight significantly. In effect, the statistics are heavily
biased towards this value and may even result in numerical
instability in the case of the variance estimate.

Proposition 4 (Adaptive choice of the initial statistics).
The recursive update (5) is initialized with zeros statistics
and the initial statistics is added in the evaluation of the
expectation parameter in Step 1 of the Algorithm 1 by

φ̂[k] = V [k] + κV [0]

ν[k] + κν[0] ,

where κ is an adaptation factor (the original formula arise
for κ = 1). A good heuristic choice is κ = ν[k]/neff , and
neff = 1/

∑n
i=1(w̃(i)

t )2 is known as the number of effective
particles.

The heuristics is based on an intuitively appealing as-
sumption that the contribution from the previous particles



should be proportional to the number of effective particles.
In the case of ideal sampling (w = 1), neff = ν[k] and the
original formula is recovered. In the degenerate case of
neff = 1, ψ̂[k] = (V[0] + T (x(j)))/2, where j is the index
of the particle with maximum weight.

IV. Tracking of an Atmospheric Release of
Radiation

Release of a nuclear material into the atmosphere can
have severe impact on the health of people living in the
trajectory of the release. The most likely place for such an
event is the nuclear power station. Hence all are equipped
with radiation monitoring network. Since the network is
relatively sparse, it is capable to provide enough informa-
tion for estimation of the most important parameters of
the accident. Particle filtering has already been applied
to this problem [9], [17]. However, due to sharply peaked
likelihood function, the bootstrap proposal is inefficient
and adaptive particle filtering using the Laplace proposal
significantly outperforms it in terms of effective sample
size [18].
A. Atmospheric dispersion model

If we knew all parameters of the release and that of
the atmospheric conditions, the spatial distribution of an
instantaneous release of the pollutant can be described by
a model known as the Gaussian puff. Under this model,
the released material creates a symmetrical plume with
center l that is moving in the atmosphere and growing in
size.

The concentration of the pollutant C is

C(s, τ) = Qe−λτ

(2π)3/2σ1σ2σ3

exp
[
− (s1 − l1,τ )

2σ2
1

2
− (s2 − l2,τ )2

2σ2
2

− (s3 − l3,τ )2

2σ2
3

]
. (17)

where s = [s1, s2, s3] are spatial coordinates in the Carte-
sian coordinate system, τ is the number of seconds since
the release,Q is the magnitude of the instantaneous release
assigned to the puff in becquerel [Bq], lt = [l1,t, l2,t, l3,t] is
the location of the center of the puff, λ denotes the decay
constant of the modeled isotope, and σ· are dispersion
coefficients given by atmospheric conditions.
The released material is subject to the wind field yield-

ing the following movement of the puff:
l1,t+1 = l1,t −∆t vt(lt) sin(φt(lt)),
l2,t+1 = l2,t −∆t vt(lt) cos(φt(lt)), (18)
l3,t+1 = l3,t,

where vt(lt) and φt(lt) are the wind speed and wind
direction at location lt, respectively.
In the case of continuous release, the released material

forms a plume, which can be approximated by a sequence
of puffs, one per sampling period of the measurement
network. See Figure 3 for illustration.
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Figure 3. Illustration of the total absorbed dose of radiation from
a short release modeled by six puff models.

B. State space model
The state space model for the problem is described in

detail in[18] and is now briefly reviewed. The state variable
is

xt = [at, bt, Qt−M , . . . Qt, lt−M , l2 . . . , lt],

where Qt−M , . . . , Qt are activities of the released puffs,
and M is the number of puffs within the sensor range.
The released activities are temporally independent with
Gamma prior,

p(Qt) = G(αQ, βQ), (19)

with parameter αQ, βQ. Variables at, bt are correction
coefficients of the numerical wind field forecast, ṽt and
φ̃t, such that the true wind speed and direction needed in
(18) are

vt(s) = ṽt(s)at, (20)
φt(s) = φ̃t(s) + bt. (21)

Transition model for at and bt is

p(at|at−1) = G(γ−2
a , γ2

aat−1), (22)
p(bt|bt−1) = tN (bt−1, σb, 〈bt−1 − π, bt−1 + π〉).

Here, tN denotes truncated Normal distribution. Parame-
ters γa and σb govern variance of the transition model. The
puff centers lt−M , . . . , lt evolve deterministically according
to (18).

C. Measurement model
The release of radiation is observable via radiation

dose measurements from the radiation monitoring network
(RMN) and an anemometer. Each sensor in the RMN pro-
vides measurements yj,t with inverse Gamma distribution



p(yj,t|x1:t) = iG(γ−2
y + 2, (γ−2

y + 1)(ynb,j + yQ,j,t)). (23)

where, γy is a parameter of relative variance of the
distribution, ynb,j is a fixed value of typical radiation
background at the jth sensor, and

yQ,j,t =
M∑
m=1

cj,m,t(lt)Qt−m. (24)

Here, cj,m,t is a complex function of the puff location
obtained by 3D numerical integration.

V. Simulation Results

A. Simulation setup
The simulated accident was a release of radionuclide

41Ar. Bayesian filtering is performed with a sampling
period of 10 minutes, matching the sampling period of
the radiation monitoring network which provides measure-
ments of time integrated dose rate in 10-minute intervals.
The same period was assumed for the anemometer.

Observations were sampled from distributions described
in Section IV-C with mean values evaluated from the
dispersion model. The accuracy of the radiation dose
sensors was set to γy = 0.2. Accuracy of the anemometry
was evaluated to correspond to parameters, γa = 0.1 and
σφ = 5 degrees. From historical data, we have estimated
the variability of the transition model to be γa = 0.2 and
σb = 20.

B. Tested methods
1) Conditionally independent proposal (Laplace): The

proposal tailored for the problem of tracking atmospheric
release of radiation was proposed in [18] as an improve-
ment over the bootstrap proposal of [17].

The nature of the problem allows to choose a condition-
ally independent approximation

q(at, bt, Qt|y1:t) ≈ q(at|vt)q(bt|φt)q(Qt|yQ,t), (25)

where the first partitions are optimal proposals. For the
inverse Gamma density of the likelihood (23), the Gamma
transition model (22) is conjugate with posterior density
in the form of Gamma density. So is the Normal likelihood
of the wind direction and its Normal random walk model
(22). The first two factorized densities in (25) can be thus
solved analytically, using textbook results.

Derivation of q(Qt|y1:m, s1:t) is more demanding since
the likelihood (23) is not conjugate. We apply the Laplace
aproximation to obtain

q(Qt|y1:m,t, s1:t) = tN (µQ, σ2
Q, 〈0,∞〉), (26)

where algorithm for evaluation of moments µQ, σQ is
described in [18].
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Figure 4. Efficiency of the proposal distributions for particle filtering
for a release of radiation with known duration.

2) AIS PF algorithm: We choose the parametric form
of the proposal to be:

q(log at, bt, logQt|µθ,Σθ) = N (µθ,Σθ), (27)

which requires for an additional Jacobian in the evaluation
of the likelihood function. The proposal is a multivariate
extension of the Example 1. Hence, the natural parameter
and the natural statistics are multivariate counterpart of
those in Example 1, T(x) = [x,xxT ].

The initial statistics were chosen using a population of
100 particles using the conditionally independent Laplace
proposal (Section V-B1). Statistics V[0] was obtained by
moment matching with the moments of the proposal for
ν[0] = 1. All simple initializations failed in this case.
The heuristics from Proposition 4 significantly improved
performance of the method.

C. Efficiency of the methods

Efficiency of the proposals was tested on a simple sce-
nario with a release of constant release rate Qt from time
t = 1, to t = 6, with Q1:6 = [1, 1, 1, 1, 1, 1]× 1016Bq. This
scenario allows for comparison with previous approaches
that were using the bootstrap proposal, e.g. [17]. The effec-
tive number of particles is displayed in Figure 4 for various
values of the forgetting factor of AIS. The best results
were obtained with λ = 0.99. Note that the proposed
AIS approach significantly outperforms the conditionally
independent Laplace proposal at the time of the release,
at t = 6 the AIS PF with λ = 0.99 has by an order of
magnitude higher neff . When the release is over and the
cloud moves away from the sensor range (circa at time
t = 12), the conditionally independent proposal becomes
optimal. Note that in this case, the AIS result closely
match those of the optimal proposal. This verifies that
the parametric model is appropriate.
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In the first test, the difference in performance between
the AIS MPF and AIS auxiliary PF was completely
negligible. The improvement of explicit evaluation of the
mixture (13) should be more apparent for narrow tran-
sition models [7]. To simulate such a scenario, we have
run a more demanding experiment of unknown duration
of the release (simulated at times t = 7, . . . , 12, in stable
weather (γa = 0.05 and σb = 20) and with higher
measurement error γy = 0.9 (this can simulate the effect
of model mismatch error). In this scenario, the AIS MPF
outperformed the auxiliary sampling AIS in the number of
effective particles per one second of execution time, Figure
5. All algorithms were implemented in the C language.

VI. Discussion
The proposed AIS-PF algorithm is especially suitable

for implementation in FPGA pipeline. Note that in the
recursive setup, the size of the batch nk has the role of
the delay between the time of computation of the statistics
and its use for sampling. Thus the minimum value of nk
that can be chosen in the FPGA implementation is given
by the length of the pipeline.

In the current form, the method is suitable mostly for
unimodal distributions. It is relatively straightforward to
extended it to the mixture proposals using a recursive
method of estimation of their parameters [19]. However,
such a method would be even more sensitive to the choice
of its initial statistics. An alternative is to use the incre-
mental mixture sampling [?] or the AMIS procedure [?],
however, at the price of loosing the recursive evaluation.

VII. Conclusion
We have proposed to use the adaptive importance sam-

pling (AIS) as a method of adaptive particle filtering.
This method can be elegantly combined with the marginal
particle filter, to yield a fully recursive adaptation. Thus,

the algorithm is very attractive for implementation in
field-programmable gate array. The price for recursivity
is the sensitivity to the choice of initial statistics. We
proposed several options and a heuristics based on the
number of effective particles.

The method was tested on a challenging problem of
tracking of atmospheric release of radiation. It was shown
that the proposed method significantly improves the effi-
ciency of particle generation at the demanding situations
and matches the optimal proposal when available.
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