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h i g h l i g h t s
< An algorithm for navigation of UAVs tracking atmospheric release is pro-posed.
< Dynamics of the release is unknown and estimated on-line on a fine time scale.
< Time varying biases of the numerical weather forecast are estimated.
< Assimilation methodology is based on the sequential Monte Carlo.
< Twin experiments performed on a release of radiation with realistic setting.
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a b s t r a c t

Tracking of an atmospheric release of pollution is usually based on measurements provided by stationary
networks, occasionally complemented with deployment of mobile sensors. In this paper, we extend the
existing concept to the case where the sensors are carried onboard of unmanned aerial vehicles (UAVs).
The decision theoretic framework is used to design an unsupervised algorithm that navigates the UAVs to
minimize the selected loss function. A particle filter with a problem-tailored proposal function was used
as the underlying data assimilation procedure.

A range of simulated twin experiments was performed on the problem of tracking an accidental
release of radiation from a nuclear power plant in realistic settings. The main uncertainty was in the
released activity and in parametric bias of the numerical weather forecast. It was shown that the UAVs
can complement the existing stationary network to improve the accuracy of data assimilation. Moreover,
two autonomously navigated UAVs alone were shown to provide assimilation results comparable to
those obtained using the stationary network with more than thirty sensors.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Accidental release of a pollutant into the atmosphere is a rare
event, however with severe consequences for potentially many
people living in proximity of its source. Correct application of the
protective measures requires the best possible knowledge about
the source and the trajectory of the plume in the atmosphere. Since
dispersion of the pollutant in the atmosphere is highly stochastic,
every measurement is of a great value. This fact motivated the
creation of stable monitoring networks, e.g. around nuclear power
plants, and stable and mobile stations for general air quality
monitoring that are routinely in operation. The use of airborne
measuring stations is less frequent, they are typically assumed to be
used only in cases of severe accidents. Since it is too risky to send
human-operated aircrafts into the polluted area, these are assumed
to be used in the post-accident analysis.With increasing availability
x: þ420 26605 2068.

All rights reserved.
of commercial unmanned aerial vehicles (UAVs) arises the question
of their use in tracking of accidental atmospheric releases.

In principle, the UAVs have several important advantages. First,
they can fly in three dimensional space without spatial restrictions,
which contrasts with limits of road vehicles. Second, they can be
relatively small and thus they can be deployed in a very short time.
Third, as unmanned vehicles they can fly to dangerous zones.
Fourth, their movement in the atmosphere is relative to the wind
which provides (in combination with GPS) an additional source of
information about the wind field.

In this paper, we study the advantages of using UAVs in tracking
of an atmospheric release. This task has been considered before
using expert system with manually selected rules (Kuroki et al.,
2010). Here, we are concerned with fully automatic on-line navi-
gation of the UAVs. We study two potential roles of UAVs: operation
in a standalone mode, and operation as a complementary
measurements to the existing monitoring networks. Operation in
the complementary mode is possible in high profile applications
such as radiation accidents, while the standalone mode may be
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interesting for less safety critical applications, such as chemical
accidents.

From themethodological point of view, UAVs aremobile sensors
that can be relocated at every sampling time. Their navigation is
thus an extension of the task of a monitoring network designwhich
has been studied for decades, from early works (Caselton and
Husain, 1980) to recent ones (Abida and Bocquet, 2009;
Heuvelink et al., 2010). The standard formalism for sensor posi-
tioning is the decision theory under uncertainty (Berger, 1985) that
poses the task as a minimization problem with respect to the ex-
pected future loss function. Previously proposed approaches differ
in three aspects: (i) representation of uncertainty, (ii) loss function,
and (iii) optimization methods and constraints. The need for
uncertainty representation limits the possible selection of the
assimilation methodology. For example, traditional methods like
point based estimates such as the variational (Jeong et al., 2005;
Kovalets et al., 2009) or genetic approach (Haupt et al., 2009;
Cervone et al., 2010) are not a natural choice. We need to choose
from the methods that model uncertainty using a Gaussian density
(Zidek et al., 2000; Abida and Bocquet, 2009), or an empirical
density obtained by Monte Carlo trials (Heuvelink et al., 2010;
Melles et al., 2011). The choice of the loss functions ranged from
entropy (Zidek et al., 2000) to the number of misclassified people
(Heuvelink et al., 2010). Since most authors aimed for the global
optimum, the most popular choice of the optimization method was
simulated annealing, e.g. (Abida et al., 2008; Melles et al., 2011).

A distinct feature of the UAVs as mobile sensors is the need to
compute their new locations in real time. This puts practical
constraints on the processing time of all elements of themethod. As
a first step, we relax the requirement of global optimality and seek
only a suboptimal solution. We choose to represent the uncertainty
via the weighted empirical density, which is provided by the
particle filter (Pecha et al., 2009; Hiemstra et al., 2011). We combine
both popular loss functions, i.e. the mutual information and the
misclassification loss, into a single loss function for improved
robustness and flexibility. Computational details of this approach
are based onworks from the field of UAV navigation (Skoglar, 2009;
Hoffmann and Tomlin, 2010; �Smídl and Hofman, 2012b) and recent
techniques for efficient Monte Carlo sampling (�Smídl and Hofman,
2012a).

The algorithms were tested in simulated twin experiments.
Specifically, we simulate a release of a radioactive pollutant from
a nuclear power plant, where the radiation monitoring network
(RMN), also known as radionuclide monitoring network, is already
in place. In this scenario, we investigate the added value of the
UAVs as a complementary means of radiation situation assessment.
For comparison, we also investigate the same release without the
data from the RMN to investigate the value of UAVs for tracking of
releases from less protected sources.
2. Theoretical background

Navigation of the UAVs will be formalized as the task of posi-
tioning J sensors, where J is the number of available UAVs. At each
time step t, we seek new directions of flight of all UAVs,
v1,tþ1,.,vJ,tþ1, and their speeds s1,tþ1,.,sJ,tþ1. These form the action
variable atþ1 ¼ [v1,tþ1,.,vJ,tþ1,s1,tþ1,.,sJ,tþ1]. Following the standard
decision theory (Berger, 1985), we optimize the expected loss

a�tþ1 ¼ arg min
atþ1˛Atþ1

EðLðxt:tþh;atþ1:tþhÞjy1:tÞ; (1)

where xt:tþh ¼ [xt,.,xtþh] is the uncertain future trajectory of the
state variable, xt;Lðx;aÞ is the loss functionmapping the space of all
actions and states to the real axis; y1:t ¼ [y1,.,yt] are the measured
data; Eð$Þ is the operator of expected value with respect to a prob-
ability density function pð$Þ of the random variable in argument of
the expectation; Atþ1 is a set of all possible actions at time t þ 1.

Framework (1) is very common in the field of network design
and targeting of observations. Different methods arise for different
choices of the unknown state variable xt, representation of uncer-
tainty in the form of probability density pð$Þ, and the loss function
Lð$Þ. In this paper, we will focus on the following variants. Distri-
bution of the pollutant in the atmosphere is described by a para-
metric atmospheric dispersion model (e.g. the puff model) with
unknown parameters. The weather model is based on local
correction of the numerical weather forecast model. The state
variable xt is then quite low dimensional, composed of the
parameters of the dispersion model and the weather corrections.
The uncertainty in all parameters is represented by empirical
probability densities (Johannesson et al., 2004). The loss function is
based on combination of the misclassification loss (Heuvelink et al.,
2010) and the mutual information (Hoffmann and Tomlin, 2010).
These elements are now described in detail.

2.1. Atmospheric dispersion model

When the pollutant is released into the atmosphere, it forms
a plume which is subject to dispersion. Various parametric models
of the pollutant dispersion have been proposed. Here, we focus on
approximation of the continuous plume by a collection of puffs
(Thykier-Nielsen et al., 1999) for its simplicity. However, no
subsequent derivation is based on this assumption and it can be
replaced by any other parametric dispersion model. The puff model
is formed by a sequence of puffs labeled k ¼ 1;.;K , each puff is
assumed to approximate a short period of the release of the
pollutant at discrete time t. Concentration of the pollutant in
a single puff at time s is given by:

Ckðs;sÞ ¼
Qk

ð2pÞ3=2s1s2s3
exp

"
�
�
s1� l1;k;s

�
2s21

2

�
�
s2� l2;k;s

�2
2s22

�
�
s3� l3;k;s

�2
2s23

# (2)

where s ¼ [s1,s2,s3] is a vector of spatial coordinates,
lk,s ¼ [l1,k,s,l2,k,s,l3,k,s] is the vector of location of the kth puff center,
s ¼ [s1,s2,s3] are dispersion coefficients, and Qk is the released
activity in the kth puff. Released activity Qk is assumed to be
unknown, with very flat prior density, e.g. of gamma type

G�aQ ; bQ �fQaQ�1
t exp

��QtbQ
�
; (3)

with parameters aQ,bQ. Symbol f denotes equality up to normal-
izing constant. The prior parameters can be designed to match
apriori chosen moments, e.g. the mean value, aQ/bQ, and the vari-
ance, aQ=b

2
Q .

Illustration of the pollution model is displayed in Fig. 1. Spatial
distribution of the pollutant is then fully determined by state
variables:

xpm;t ¼ �
l1;t.lK;t ;Q1;t ;.QK;t ;s1;t ;.sK;t

�
: (4)

2.2. Wind field model

We assume that the pollutant is released from a source at
known location, [s1,pp,s2,pp] and known altitude s3,pp, in vector
notation, spp ¼ [s1,pp,s2,pp,s3,pp]. From this point it is advected by the
wind field. While it is possible to obtain numerical weather forecast
from various sources, its accuracy is usually not sufficient at the



Hðxtþ1; ytþ1Þ ¼ �
Z

pðxtþ1; ytþ1jy1:t ;atÞlog pðxtþ1; ytþ1jy1:t ;atÞdxtþ1dytþ1: (11)

Fig. 1. Illustration of composition of the puff model for release of 6 puffs. Contours
denote levels of the radiation dose and every second puff is displayed as a circle with
diameter 3s. Current wind field is illustrated by arrows in the center of each puff.
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location of the potential release. An illustration of this fact is dis-
played in Fig. 2 by comparison of the wind direction obtained from
the ALADIN numerical weather forecast and from the meteostation
at the nuclear power plant Temelin.

Therefore, we locally calibrate the numerical weather model as
follows:

vtðsÞ ¼ ~vtðsÞqv;t ; (5)

ftðsÞ ¼ ~ftðsÞ þ qf;t þ qc;tks� s0k; (6)

where ~vtðsÞ, ~ftðsÞ are the wind speed and wind direction predicted
by the numerical model at location s, respectively. s0 is the location
of the meteo-station and jj$jj denotes Euclidean distance. Constants
qt ¼ [qv,t,qf,t,qc,t] are unknown biases of the numerical weather
forecastmodel at time t. Correction of thewind field forecast is then
achieved by estimation of qv,t,qf,t and qc,t using randomwalk model
on their time evolution, such as

mean
�
qv;t
� ¼ qv;t�1; std

�
qv;t
� ¼ gvqv;t�1 þ gv0; (7)

mean
�
qf;t
� ¼ qf;t�1; std

�
qf;t
� ¼ gf; (8)

mean
�
qc;t
� ¼ qc;t�1; std

�
qc;t
� ¼ gc; (9)

where parameters gv,gv0,gf,gc govern the variability of the biases in
time. Given informative measurements, even these parameters can
be estimated from the data. Constants qv,t and qf,t are commonly
used corrections for the wind speed and direction (Hiemstra et al.,
2011). The third coefficient, qc,t, models increasing deviation of the
forecast with distance from the source.

Given wind field (5)e(6), center of the ith puff moves deter-
ministically according to

l1;i;tþ1 ¼ l1;i;t þ vt
�
li;t
�
sin
�
ft
�
li;t
��
;

l2;i;tþ1 ¼ l2;i;t þ vt
�
li;t
�
cos
�
ft
�
li;t
��
:

(10)

Dispersion coefficients s are deterministic functions of the total
traveled distance from the source and the Pasquill’s stability cate-
gory. The complete uncertainty about the future trajectory of the
pollutant is then xt ¼ [xpm,t,qt].
2.3. Loss function

We briefly review typical loss functions used in the literature. In
the whole section we assume that the decision horizon h in (1) is
only one step ahead, h ¼ 1. Generalization to longer horizons is
straightforward, but yields computationally more demanding
algorithms.

2.3.1. Entropy and mutual information
The purpose of the positioning a new mobile measuring station

is to reduce uncertainty in the estimated parameters. This idea can
be formalized using the joint entropy of the state and the obser-
vations (Caselton and Husain, 1980; Zidek et al., 2000).
Loss function in the form of (11) is suitable only for a limited
class of observationmodels. In general, the mutual information loss

Iðxtþ1; ytþ1Þ ¼ Hðytþ1Þ þ Hðxtþ1Þ � Hðxtþ1; ytþ1Þ: (12)

is a better choice (Hoffmann and Tomlin, 2010). Since H(xtþ1) can
not be influenced by actions at, we need to evaluate (11) and

Hðytþ1Þ ¼ �
Z

pðytþ1jy1:t ;atÞlog pðytþ1jy1:t ;atÞdytþ1: (13)

2.3.2. Misclassification of decision
An alternative loss function for the purpose of population

protection is defined with respect to the final decision on the
countermeasures. Typically, the limits for the introduction of
countermeasures are given in the form of threshold on a quantity of
interest dt(s) at location s. The countermeasures are introduced if
the expected value EðdtðsÞÞ > d, where d it the prescribed
threshold.

A suitable loss function is then to minimize the error of classi-
fication, potentially weighted by the number of affected people
(Heuvelink et al., 2010):

Lmissðxtþ1;atÞ ¼ aLfp þ bLfn; (14)

where Lfp is the number of people incorrectly classified for the
countermeasure, Lfn is the number of people that are incorrectly
classified to stay in the polluted area, and a,b are the costs associ-
ated with incorrect decisions. We split the area around the source



Fig. 2. Comparison of histograms of the wind direction at the location of the power plant Temelin for year 2008 from the ALADIN numerical model (left) and observed data (right).
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of the release into M subareas, each representing a constant
number of inhabitants, e.g. 100, each with a predefined location, im,
m ¼ 1.M. The total number of incorrectly classified inhabitants is
then

Lfp ¼
XM
m¼1

E
�bdðimÞ > d&dðimÞ < d

�
; (15)

Lfn ¼
XM
m¼1

E
�bdðimÞ < d&dðimÞ > d

�
; (16)

where bd is defined as a point estimate of the quantity of interest.
Symbols > and < are used in the sense of logical operators, i.e. its
result is one if the condition is met and zero otherwise. Symbol &
represents logical AND where the zeros and ones from the
inequalities are treated as boolean values. The expectations in
(15)e(16) are evaluated with respect to random variables xtþ1 and
ytþ1.

2.3.3. Combined loss function
The main advantage of the misclassification loss function is its

focus on the final decision that needs to be made, i.e. the coun-
termeasures. However, it also suffers from higher granularity than
the mutual information. In the extreme case, when the release
becomes significantly lower than the threshold, the loss function is
equal to zero for all possible UAV positions. To increase robustness
of the decisions, we propose to combine the two loss functions into
one

Lðxtþ1;atÞ ¼ aLfp þ bLfn þ Iðxtþ1; ytþ1Þ þ LaðatÞ; (17)

where La(at) is a term reserved for the preference of the UAVs. This
term will be specific to the used machine and its purpose is to
supervise practical issues of the UAV, such as its fuel consumption
and safe return to the base station.

Note that the coefficients a,b need to be tuned relatively to the
mutual information.
1 More exactly, it is distributed as a wrapped Gaussian density (Mardia and Jupp,
2000). However, the difference from the regular Gaussian density is negligible for
the considered values of sf .
3. Particle filter for data assimilation

We assume that all uncertainty is modeled by an empirical
probability density function
pðx1:t jy1:tÞz
XN

wðnÞ
t dðx1:t � xðnÞ1:t Þ; (18)
n¼1

where xðnÞ1:t , n ¼ 1,.,N, is a sample of the state space trajectory.
Assimilation of the measured data is then achieved via sampling-
importance-resampling procedure, where the weights can be
computed recursively,

wðnÞ
t fwðnÞ

t�1
pðyt jxtÞpðxt jxt�1Þ

qðxt jytÞ
: (19)

The proposal (importance) density qðxt jytÞ can be chosen arbi-
trarily, however its choice severely impacts computational require-
ments of the filter. Good resampling strategy is also necessary to
prevent degeneracy of the particle filter (19) (Doucet et al., 2001).
3.1. Measurement models

3.1.1. Measurements of the wind field
We assume that the wind direction and velocity can be

measured by stationary sensors as well as by the UAVs themselves
(van den Kroonenberg et al., 2008). For simplicity, we assume that
the measurements of the wind speed are Gamma distributed
around the true value with standard deviation of the observation
std(vt) ¼ gvvt(s0), and the measurements of the wind direction are
Gaussian1 distributed around the true value with constant
std(ft) ¼ sf. These values are typically available from the manu-
facturers of the sensors. Accuracy of the measurements from the
UAVs may be harder to calibrate, however, results in (van den
Kroonenberg et al., 2008) indicate that accuracy of the measure-
ments is comparable to that of the stationary sensors.

3.1.2. Measurements of the pollutant
Direct measurements of the pollutant concentrations are often

assumed (Johannesson et al., 2004; Abida and Bocquet, 2009). In
the radiation application, it may not be always possible and an
additional transformation requiring spatial and temporal integra-
tion of the concentration is needed (�Smídl and Hofman, 2012a).
However, in both situations, the error of measurement is assumed
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to be relative to its value and the measured value from one puff is
linear in the released activity. Therefore, we analyze measurements
of the concentration, treatment of the gamma dose detector in the
radiation case requires more computation but is completely anal-
ogous from the assimilation point of view.

Since the release is composed of many puffs, the true concen-
tration at the jth sensor is the superposition of contributions from
all puffs and natural background, cbg:

cj;t ¼
XK
k¼1

Qkrk;j;t þ cbg ; rk;j;t ¼
Zt
t�1

Q�1
k Ck

�
sj; s

�
ds: (20)

The measured value of the concentration at the jth sensor, yj,Q,t,
is assumed to have inverse Gamma density with relative error,
gy˛h0;1i,

p
�
yj;t
			Q1:t



¼ iG�ay;by�fy�ay�1

j;t exp
�
� byy

�1
j;t



; (21)

where ay ¼ g�2
y þ 2, by ¼ ðay � 1Þcj;t . Note that the sensors can be

either stationary or mounted on the UAVs. Since position of the
UAVs is changing in time, the integration path over sj in (20) needs
to be adjusted. We assume linear interpolation of the UAVs’ posi-
tions between at and atþ1.

3.2. Proposal density

In principle, it would be possible to use the popular bootstrap
particle filter (Gordon et al., 1993) to obtain the assimilated results.
However, it would be computationally inefficient. More computa-
tionally efficient proposal densities can be designed by approxi-
mation of the optimal proposal density (Doucet et al., 2001). In this
paper, we use the conditionally independent proposal density
suggested in (�Smídl and Hofman, 2012a). Many elements of the
state variable evolve deterministically, e.g. the locations of the
puff’s centers lt and the old values of the released dose Qt. The only
elements of xt that need to be sampled are Qt,qt. Within these
elements, we impose the following conditional independence
structure,

qðQt ; qt jxt�1; ytÞh
qðQt jyt ;Qt�1Þq

�
qv;t
		yt ; qv;t�1

�
� q
�
qf;t ; qc;t

		yt ; qt�1



:

(22)
Fig. 3. Illustration of two loss functions evaluated at the same time for the same measureme
radius of each UAV illustrate the loss function for its positioning given the best possible lo
the optimal proposal densities for qðqv;t jyt ; qv;t�1Þ,
qðqf;t ; qc;t jyt ; qt�1Þ can be found analytically, see Appendix A.1.
Proposal density for qðQt jytÞ is still intractable, but the Laplace
approximation (Kass et al., 1990) was found to provide suitable
approximation, see Appendix A.2.

3.3. Navigation of the UAVs

We assume that within the sampling period, the UAVs can fly at
a maximum speed smax. Hence, we discretize the space of potential
actions into R points on polar coordinates where the edge is
reachable at the maximum speed of the UAV, see Fig. 3 for illus-
tration. The total number of potential decisions in Atþ1 for one-
step-ahead optimization is then RJ.

Optimal decisions are obtained by evaluation of one-step-ahead
optimization of the chosen loss function for all combinations of the
potential decisions. Sampling time of the decisions is 10 min. The
decision is then submitted as a setpoint to the UAVs that navigate to
the given coordinates autonomously.

The loss function (17) contains integrals over the future values of
the state and the observations that need to be evaluated numeri-
cally. From the range of potential approaches (�Smídl and Hofman,
2011), we selected the importance sampling approach. Specifi-
cally, we approximate expected values of the loss such as (13) by:

Hðytþ1Þz
XL
l¼1

log p
�
yðlÞtþ1jy1:t ;at

�
; (23)

where yðlÞt , l ¼ 1.L, are samples from pðytþ1jy1:t ;atÞ. In all
simulations, we used the same number of hypothetical measure-
ments yðlÞtþ1 as the number of particles, i.e. L ¼ N.

Evaluation of the misclassification loss is analogous,

Lfpz
XM
m¼1

XL
l¼1

 bdðlÞðimÞ > d&dðlÞðimÞ < d

!
; (24)

where

bdðlÞðimÞ ¼
XI
i¼1

wðlÞ
i;t d
�
im; x

ðiÞ
t:tþh

�
;wðlÞ

t f

p
�
yðlÞtþ1jx

ðiÞ
tþ1

�
PI

i¼1 p
�
yðlÞtþ1jx

ðiÞ
tþ1

� :
nts in selected flight direction and flight speed for each UAV. Contour plots in the action
cation of the other UAV.
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Remark 1. We have chosen the total absorbed dose per person as
our quantity of interest d. This is an integral quantity and needs to
be evaluated on a long horizon, xt:tþh. However, we still consider
uncertainty only in xtþ1 and optimize only action variable at,
prediction of the future evolution of the cloud is deterministic for
each particle, using fixed values of the correction coefficients
qtþh ¼ qtþ1 and Qtþh ¼ 0, for h > 2.
4. Results and discussion

In this Section, we demonstrate added value of the UAVs for the
tracking of atmospheric release in two scenarios from radiation
protection. This application domain is chosen because nuclear
power stations are equipped with stationary monitoring networks
(RMN) which allows to study the use of UAVs as complementary
measuring devices. For comparison, we also run the assimilation
procedure without the data from the RMN.

4.1. Release parameters

A hypothetical one hour long release of radionuclide 41Ar from
a nuclear power station was simulated. This radionuclide was
chosen as to reduce computational cost of the experiments for two
reasons: (i) it is a noble gas which has no deposition and conse-
quently no groundshine, hence we need to calculate only the
gamma dose rate from cloudshine; (ii) it emits gamma radiation at
energy level 1293.57 keV with branching ratio 99.1% and thus can
be treated as a mono-energetic nuclide.

Other parameters of the release, such as the locations of the
RMN sensors, the position of the meteostation, the locations of the
inhabited areas and the typical weather conditions were calibrated
for a hypothetical release from the Czech nuclear power plant
Temelin.

The simulated release started at time t ¼ 1 with release of one
puff every 10 min with activity Q1:6 ¼ [1,5,4,3,2,1] � 1e16Bq and
Qt ¼ 0, for t > 6. The released activity was chosen high enough to
reach a realistic level of the total absorbed dose needed for the
misclassification loss function. Data assimilation is performed in
time steps t ¼ 1,.,21, with sampling period of 10 min. This
sampling period was chosen to match the sampling period of the
RMNwhich provides measurements of time integrated dose rate in
10-min intervals. The same period was assumed for the
Fig. 4. Contour plots of the predicted total cloudshine dose in time t ¼ 18. Left: Prediction
a biased wind field. Right: Result of assimilation using only measurements from the RMN
magnification in the top left corner.
anemometer. Values of the measurements were simulated as
random draws from the measurement model (21) with mean
values given by the twin model. The measurements are assumed to
have standard deviation of 20% for the radiation dose, this estimate
is based on conservative estimates of the accuracy of the gamma
dose sensors (Thompson et al., 2000).

The forecast of the wind field was assumed to be homogeneous
over the numerical computational grid for clarity of presentation,
with values ~vt ¼ 4 m=s, ~ft ¼ 80� and Pasquill’s class of stability D.
This forecast is common in the locality of the power plant. A twin
experiment was simulated with bias of the wind forecast according
to the model (5)e(6) with parameters qv;t ¼ 0:75, qf;t ¼ 20�,
qc;t ¼ �0:02. Relatively high variability of the biases in time was
assumed, specifically, gv ¼ 20%, gf ¼ 20�, gc ¼ 0.01. Standard
deviations of the measurements were estimated from real data
measured at similar meteorological conditions, yielding 5% for the
wind speed and 5� for the wind direction.

The presented scenario is rather simplistic and represents
a favorable situation for the data assimilation. Its purpose is to
present a proof of concept of the approach. More demanding
scenarios can be also handled by the presented methodology,
however, more careful modeling of the weather conditions, tech-
nical details of the release and computational issues need to be
resolved. These issues are beyond the scope of this paper and left
for further research.

4.2. Assimilation with RMN only

Contour plots of the total cloudshine dose after 3 h are displayed
in Fig. 4 for the numerical forecast, the twin model and the result of
particle filter assimilation using data from the RNM (denoted by
blue dots), respectively. The results of assimilation were obtained
using algorithm in Appendix A with 99 particles. This setup will be
used for all subsequent assimilation procedures.

Note that the contour plot of the release assimilated using only
the RMN covers larger area than that of the twin model. In effect,
the estimate of the particle filter is a weighted superposition of N
simulated plumes with different parameters. If the measured data
can not distinguish which parameter values are relevant, all
possible realizations must be considered. Since the RMN has a ring
of sensors around the power plant, the released activity, Q1:6, is
estimated with high accuracy, Fig. 6 top left. Due to the meteosta-
tion at the power plant, the wind speed and direction biases, qv,t
based on the forecasted wind field. Middle: Twin model representing the reality by
. The exact locations of the sensors in the first ring of the RMN are displayed in the



Fig. 5. Typical contour plots of the total cloudshine dose in time t ¼ 18 (3 h after the release start) for different loss functions used to navigate the UAVs. The pentagons denote
positions of the inhabited areas used in the misclassification loss. Top row: The data assimilation procedure is using data from the RMN and the UAVs. Bottom row: The data
assimilation procedure is using only data from the UAVs. Locations of the UAVs at each time step are connected with thick lines.
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and qf,t, are also estimated with good accuracy. However, due to
sparsity of the second and the third ring of the RMN and unavail-
ability of the wind field measurements outside of the power plant,
the most uncertain parameter is the straight line wind deviation,
qc,t. It is the uncertainty in qc;t that causes the increasing spread of
the estimated plume with the distance from the source. This result
highlights the attractive feature of the particle filtering that the
uncertainty is not underestimated and the estimated contour plot
includes the values of the twin model.

4.3. Data assimilation with the UAVs

Assimilation of the release was repeated with two autono-
mously navigated UAVs. In each time step, each the UAV considered
49 combinations of its flight direction and speed, displayed in the
last point in UAV trajectory in Fig. 5. The global optimization then
evaluated the loss function for 492 combinations and navigated
each UAV according to the course with the lowest loss function. The
results for three loss functionsd(i) mutual information (12), (ii)
misclassification loss (14), and (iii) the combined loss (17)dare
displayed in Fig. 5. In the top row, the assimilation algorithm is
using the data from the RMN and these data are also included in the
evaluation of the loss functions. Note that with the UAVs, the ex-
pected values of the total cloudshine dose are almost identical for
all considered loss functions. The trajectories of the UAVs are
different for each loss. However, since the released activity is
estimated well (Fig. 6), the most valuable measurement from the
UAVs is the wind field measurement that allows estimation of the
parameter qc;t, which is provided under all considered loss func-
tions. Specifically, the wind direction measurements allow efficient
estimation of the bias parameter via optimal proposal (Appendix
A.1). Estimation of the same parameter from the radiation
dose measurements is less reliable and more computationally
demanding.

In the complementary mode, the value of the UAVs is mainly in
determination of the weather conditions, since the radiological
quantities are determined well by the RMN. The drones typically
move at the edge of the plume, which is consistent with findings of
Abida and Bocquet (2009). The edge is found as a balance of two
factors. First, the Gaussian shape of the pollutant dispersion in
space and relative measurement error increase informativeness of
the measurements with growing distance from the puff’s center.
Second, the constant term from the natural radiation background
increases the relative error of measurements and thus decreases
informativeness with distance form the center. The location of the
optimal edge of the plume is thus determined by the measurement
model and its parameters.

The same experiment was repeated without the measurements
from the RMN and using only the measurements from the UAVs.
The most significant change is in the accuracy of estimation of the
released activity, see Fig. 6, bottom row. Themean value is still close
to the simulated values, however, the variance is much larger. The



Fig. 6. Box plots of the expected value of the released activity, Q1:6, from 50 random simulations. Solid lines represent the values of the twin simulation. Top row: Using
measurements from the RMN (left) and RMN þ UAVs (middle and right). Bottom row: Using data from the UAVs only.
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trajectories of the UAVs as well as the contours of the total cloud-
shine dose correspond verywell with the results obtained using the
RMN, Fig. 5.

Reliability of the estimation was tested via the figure of merit in
space (FMS) measure (Abida and Bocquet, 2009),

FMS ¼

P
s˛S

min
�bDðsÞ;DtwinðsÞ



P
s˛S

max
�bDðsÞ;DtwinðsÞ


; (25)

where bDðsÞ denotes expected value of the total cloudshine dose at
location s, and Dtwin(s) is the dose for the twin model. Box plots
with this measure for 50 random simulations are displayed in Fig. 7.
Note that the FMS of the assimilation without the UAVs is
decreasing due to the incorrectly estimated wind bias, while all
scenarios with the UAVs are able to correctly determine the wind
direction bend and improve the FMS. The differences between the
three considered loss functions are negligible since differences in
informativeness of the measurements are small.

As expected, the scenarios using only the UAV measurements
have lower FMS than those using the RMN. Interestingly, the loss
of performance is usually lesser than 10%. The flexibility of the
UAVs is able to compensate the lack of sensors in the RMN. This is
a very promising result for applications where the RMN is not
available.
4.4. Continuous release

The scenario in Section 4.1 is favorable for the UAVs since the
radioactive cloud is relatively small, and its tracking is equivalent to
flying with the cloud. Continuous release of the radioactive mate-
rial is more demanding for assimilation since the uncertainty in the
concentration is distributed over the whole plume due to the
random walk model on the wind field biases given by Equations
(7)e(9). A rapid change in the wind direction (which is assumed to
have high probability) would shift the whole plume.

A continuous release was simulated with the same weather
conditions as those in Section 4.1, but the release does not end after
one hour, but keeps repeating the same release profile, see Fig. 8. As
in the short release, the measurements from the RMN are infor-
mative about the released activity and the resulting estimates are
accurate. Estimates obtained using only the measurements from
the UAVs have significantly higher variance.

Typical values of the assimilated contour plot of the total
cloudshine dose for all scenarios are displayed in Fig. 9, for
scenarios using the RMN, RMN þ UAVs, and UAVs only. Position of
the UAVs in all time steps is also displayed where appropriate. In
this case, the UAVs can not simply follow a cloud disconnected from
the source but they have to monitor the full area of the plume. In
the RMN þ UAVs scenario, the UAVs move in the area of the RMN
for the first few time steps. When the plume leaves the area
covered by the RMN, the first UAV follows the plume and when it is
sufficiently far away from the RMN, the second UAV also follows.
However, in this case, the UAVs often goes forward and back, and in
effect, patrol the area. In the UAVs only scenario, the UAVs patrol
exactly the area covered by the first ring of the RMN, see Fig. 9 right
(detail). Hence, they are not able to obtain informative measure-
ments about the wind field biases in the distant parts of the
monitored area.

Quantitative comparison of the assimilation results in terms of
the FMS is displayed in Fig. 10. As expected, the best results are
obtained in the RMNþUAVs scenario. The RMN and UAVs scenarios
achieve very similar results, with the UAVs scenario being slightly
worse. Note however, that the UAVs have only 2 radiation sensors
compared to 32 sensors of the RMN. It is the flexibility in navigation
of the UAVs that allows to compensate for themissing sensors. Note



Fig. 7. Box-plots of FMS (25) for all considered assimilation scenarios.
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however, that there were also few poor realizations in the box-plot
of the FMS in the UAVs only scenario. In these cases, the realization
of the random variables resulted in navigation of the UAVs to the
positions with no measurable gamma dose from the plume and
thus incorrect estimate of the released activity.

4.5. Potential extensions of the approach

The presented results were obtained using a simple dispersion
model and a simple correction model of the numerical weather
forecast. However, the same methodology can be applied to an
arbitrary dispersion model and an arbitrary weather correction
Fig. 8. Released activity in the continuous release and its estimates under differ
model since the underlying particle filter can handle any type of
complex models with uncertainty. Extensions to different models
are then straightforward. The necessary issue that needs to be
resolved for more complex models is the computational feasibility
of the particle filter. Due to the use of sophisticated proposal
function (22) designed for the considered models, evaluation of the
simulationwith assimilation and UAVs navigation of the 3 h release
for 99 particles took about 7 min on a i7 quadcore processor.
However, computational requirements can dramatically increase
for more unknown parameters, more demanding conditions, or
unoptimized non adaptive proposal functions (such as the boot-
strap filter).
ent scenarios. Solid lines represent the values simulated in the twin model.



Fig. 9. Contour plots of the total cloudshine dose assimilated under different scenarios.

Fig. 10. Box plot of the FMS for different assimilation scenarios from 50 random simulations.
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5. Conclusion

Monitoring of an atmospheric release is a demanding task due
to uncertainty in the parameters of the release and variability of the
weather conditions. Every measurement of the pollutant concen-
tration or local meteostation improves the results of the data
assimilation. Traditionally, the monitoring sensors were assumed
to be stationary, with potential extension for mobile measuring
stations. In this paper, we have extended the idea of mobile stations
to the autonomously navigated unmanned aerial vehicles (UAVs).
In a series of synthetic experiments we have shown that the UAVs
suitably complement the existing monitoring networks especially
in cases where the numerical weather forecast is biased from the
reality. Due to the possibility of vertical movement, the UAVs can
allow monitoring of parameters that the existing networks has
difficulty with, such as the release height. Extending existing
networks with UAVs can thus bring significant improvement in
radiation safety monitoring systems.

Moreover, the flexibility of the UAVs allows their independent
use as an adaptive monitoring network. We have shown that as few
as two UAVs are able to provide assimilation results of quality
comparable to that of the stationary monitoring network. In simple
scenarios, such as a short release of a pollutant, the UAVs outper-
form the stationary network. On the other hand, the Monte Carlo
study revealed increased variance of the assimilation results in the
case of the UAV-only scenario. Reliable operation in this scenario
would require to increase the optimization horizon and to compute
more particles than is needed when UAVs are used as a comple-
ment of the stationary network. Further work is clearly needed to
reach that goal.
Appendix A. Particle filter for data assimilation

Initialization: sample state variable [Q0,q0] from prior densities,
At each time t do:

1 Collect measurements yt
2 For each particle, do
(a) Update shaping parameters av;t ;bv;t using (A.1), andbqfc;t ; Pfc;t using (A.2).
(b) Sample new values of qðnÞv;t from Gðav;t ; bv;tÞ, and qðnÞ

fc;t from.
(c) Compute new locations of all puff centers lðnÞt using (5), (6)

and (10).
(d) Evaluate radiation dose coefficients rk,j,t for each receptor.
(e) Optimize shaping parameters bQ t ; sQ ;t using Newton

Raphson algorithm (Appendix B) and sample new values
Q ðnÞ
t from the resulting proposal density NðbQ t ; s

2
Q ;tÞ.

(f) Evaluate weights wðiÞ
t using (19) and normalize them.

3 Resample the particles.
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Appendix A.1. Optimal proposal densities for the wind field
correction

Since the prior on the wind speed was chosen to be Gamma
density and the density of the observation is of the inverse Gamma
type, the optimal proposal can be computed using conjugate
update (Bernardo and Smith, 1997):

q
�
qv;t
		yt ; qv;t�1

� ¼ G�av;t ; bv;t� ;
av;t ¼ v2t�1

gqvv
2
t�1 þ vq0

þ g�1
v þ 1;

bv;t ¼ v2t�1

gqvv
2
t�1 þ vq0

�
qv;t�1

��1þ~vtv�1
t

�
g�2
v þ 1



:

(A.1)

Since the randomwalk model on qf;t and qc;t is Gaussian and the
observations are also Gaussian, Equation (7) form a linear state
qfc;t ¼ ½qf;t ; qc;t �; with evolution model

qfc;t ¼ qfc;t�1 þ Q�1
2et ; Q ¼

"
g2f 0

0 g2c

#
;

and observation equations

yf;t ¼

264fmeteostation;t
fUAV1;t
fUAV2;t

375 ¼ C
�
qf;t
qc;t

�
þ R�1

2 3t ;

C ¼

2664
1 0

1 ksmeteostation � sUAV1k
1 ksmeteostation � sUAV2k

3775; R ¼ s2fI3;

where et and et are Gaussian distributed errors, and I3 denotes 3� 3
identity matrix. The optimal proposal density is then given by the
Kalman filter:

q
�
qfc;t

		yt ; qfc;t�1



¼ N

�bqfc;t ; P
;bqfc;t ¼ qfc;t�1 þ K
�
yf;t � Cqfc;t�1



;

K ¼ QCTR; P ¼ ðI � KCÞQ :

(A.2)

Appendix A.2. Laplace approximation for proposal of the released
dose

The task is to approximate the optimal proposal density which is
a product of inverse Gamma likelihood (21) and Gamma prior (3).
The Bayes rule yields

pðQt jytÞfpðQtÞpðyt jQtÞfQaQ�1
t exp

��QtbQ
�

�
Ym
j¼1

�
kj;tQt þmj;t

�ayy�ay�1
j;t exp

 
� kj;tQt þmj;t

yj;t

!
;

(A.3)

where (20) was rewritten using kj;t ¼ ðay � 1Þrt;j;t , and

mj;t ¼ Pt�1
k¼1 Qkrk;j;t þ cbg . This density is not in a standard form

and the normalization can not be obtained analytically. We propose
to approximate (A.3) using Laplace approximation (Kass et al.,
1990). Specifically, we approximate (A.3) by a probability density
at its maximum value:
bQ t ¼ argmax
Qt

ðlogðpðQt jytÞÞÞ: (A.4)
The first derivative of logarithm of (A.3) is:

dlogðpðQt jytÞÞ
dQt

¼
Xm
j¼1

"
aykj;t

kj;tQt þmj;t
� kj;t
yj;t

#
þ aQ � 1

Qt
� bQ : (A.5)

Function (A.4) has only one maximum that can be found using
the Newton Raphson method. Once the maximum value is estab-
lished, we compute the second derivative of (A.5) at point bQ t and
set it equal to inverse covariance matrix of the Normal density:

1
2
s�2
Q ¼

Xm
j¼1

264 ayk2j;t�
kj;t
bQ t þmj;t

�2

375þ ay � 1bQ 2
t

;

to form the proposal density qðQt jytÞ ¼ N ðbQ t ; s
2
Q Þ:
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